327
Views
11
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

First-principles investigation of superconductivity in the body-centred tetragonal

, , , &
Pages 2059-2073 | Received 19 Feb 2016, Accepted 17 May 2016, Published online: 07 Jun 2016

References

  • G.W. Hull, J.H. Wernick, T.H. Geballe, J.V. Waszczak, and J.E. Bernardini, Superconductivity in the ternary intermetallic s YbPd2Ge2, LaPd2Ge2, and LaPt2Ge2, Phys. Rev. B 24 (1981), pp. 6715–6718.
  • W. Jeitschko, R. Glaum, and L. Boonk, Superconducting LaRu2P2 and other alkaline earth and rare earth metal ruthenium and osmium phosphides and arsenides with ThCr2Si2 structure, Journal of Solid State Chemistry 69 (1987), pp. 93–100.
  • F. Ronning, N. Kurita, E.D. Bauer, B.L. Scott, T. Park, T. Klimczuk, R. Movshovich, and J.D. Thompson, The first order phase transition and superconductivity in BaNi2As2 single crystals, J. Phys.: Condens. Matter 20 (2008), pp. 342203-1–342203-4.
  • H. Fujii and A. Sato, Superconductivity in SrPd2Ge2, Phys. Rev. B 79 (2009), pp. 224522-1–224522-5.
  • N. Berry, C. Capan, G. Seyfarth, A.D. Bianchi, J. Ziller, and Z. Fisk, Superconductivity without Fe or Ni in the phosphides BaIr2 and BaRh2p2, Phys. Rev. B 79 (2009), pp. 180502-1–180502-4.
  • Y. Tomioka, S. Ishida, M. Nakajima, T. Ito, H. Kito, A. Iyo, H. Eisaki, and S. Uchida, Three-dimensional nature of normal and superconducting states in BaNi2P2 single crystals with the ThCr2Si2-type structure, Phys. Rev. B 79 (2009), pp. 132506-1–132506-4.
  • D. Hirai, T. Takayama, D. Hashizume, R. Higashinaka, A. Yamamoto, A.K. Hiroko, andH. Takagi, Superconductivity in 4d and 5d transition metal layered pnictides BaRh2P2, BaIr2 and SrIr2As2, Physica C 470 (2010), pp. 296–297.
  • N.H. Sung; J.-S. Rhyee; B.K. Cho, Superconductivity and anomalous transport in SrPd2Ge2 single crystals, Phys. Rev. B 83 (2011), pp. 094511-1–094511-6.
  • T.K. Kim, A.N. Yaresko, V.B. Zabolotnyy, A.A. Kordyuk, D.V. Evtushinsky, N.H. Sung, B.K. Cho, T. Samuely, P. Szabo, J.G. Rodrigo, J.T. Park, D.S. Inosov, P. Samuely, B. Büchner, and S.V. Borisenko, Conventional superconductivity in SrPd2Ge2, Phys. Rev. B 85 (2012), pp. 014520-1–014520-7.
  • V.K. Anand, H. Kim, M.A. Tanatar, R. Prozorov, and D.C. Johnston, Superconducting and normal-state properties of APd2As2 (A=Ca, Sr, Ba) single crystals, Phys. Rev. B 87 (2013), pp. 224510-1–224510-22.
  • M.S. Torikachvili, S.L. Budko,N. Ni, and P.C. Caneld, Pressure induced superconductivity in CaFe2As2, Phys. Rev. Lett. 101 (2008), pp. 057006-1–057006-4.
  • C.F. Miclea, M. Nicklas, H.S. Jeevan, D. Kasinathan, Z. Hossain, H. Rosner, P. Gegenwart, C. Geibel, and F. Steglich, Evidence for a reentrant superconducting state in EuFe2As2 under pressure, Phys. Rev. B 79 (2009), pp. 212509-1–212509-4.
  • F. Ronning, E.D. Baur, and T. Park, Superconductivity and the effects of pressure and structure in single-crystalline SrNi2P2, Phys. Rev. B 79 (2009), pp. 134507-1–134507-7.
  • M. Rotter, M. Tegel, and D. Johrendt, Superconductivity at 38 K in the iron arsenide Ba1-xKx/Fe2As2, Phys. Rev. Lett. 101 (2008), pp. 107006-1–107006-4.
  • A.S. Sefat, R. Jin, M.A. McGuire, B.C. Sales, D.J. Singh, and D. Mandrus, Superconductivity at 22 K in Co-doped BaFeAs2 crystals, Phys. Rev. Lett. 101 (2008), pp. 117004-1–117004-4.
  • H.S. Jeevan, Z. Hossain, D. Kasinathan, H. Rosner, C. Geibel, and P. Gegenwart, High-temperature superconductivity in Eu0.5K0.5Fe2As2, Phys. Rev. B 78 (2008), pp. 092406-1–092406-4.
  • L. Shan, J. Gong, Y.-L. Wang, B. Shen, X. Hou, C. Ren, C. Li, H. Yang, H.-H. Wen, S. Li, and P. Dai, Evidence of a spin resonance mode in the iron-based superconductor Ba0.6K0.4Fe2As2 from scanning tunneling spectroscopy, Phys. Rev. Lett. 108 (2012), pp. 227002-1–227002-5.
  • D. Hirai, F.V. Rohr, and R.J. Cava, Emergence of superconductivity in BaNi2Ge1-xPx/2 at a structural instability, Phys. Rev. B 86 (2012), pp. 100505-1–100505-5.
  • M. Reehuis, W. Jeitschko, M.H. Moller, and P.J. Brown, A Neutron diffraction study of the magnetic structure of EuCo2P2, J. Phys. Chem. Solids 53 (1992), pp. 687–690.
  • I.R. Shein and A.L. Ivanovski, Electronic and structural properties of low-temperature superconductors and ternary pnictides ANi2Pn2 (A=Sr, Ba and Pn=P, As), Phys. Rev. B 79 (2009), pp. 054510-1–054510-7.
  • Y.-Z. Zhang, H.C. Kandpal, I. Opahle, H.O Jeschke, and R. Valent, Microscopic origin of pressure-induced phase transitions in the iron pnictide superconductors AFe2As2: An ab initio molecular dynamics study, Phys. Rev. B. 80 (2009), pp. 094530-1–094530-6.
  • R.E. Schaak and R.J. Cava, Boron substitution in ternary metal phosphide superconductors, Mater. Res. Bull. 39 (2004), pp. 1231–1235.
  • J.J. Ying, Y.J. Yan, R.H. Liu, X.F. Wang, A.F. Wang, M. Zhang, Z.J. Xiang, and X.H. Chen, Isotropic superconductivity in LaRu2P2 with the ThCr2Si2-type structure, Supercond. Sci. Tecnol. 23 (2010), pp. 115009-1–115009-4.
  • P.J.W. Moll, J. Kanter, R.D. McDonald, F. Balakirev, P. Blaha, K. Schwarz, Z. Bukowski, N.D. Zhigadlo, S. Katrych, K. Mattenberger, J. Karpinski, and B. Batlogg, Quantum oscillations of the superconductor LaRu2P2: Comparable mass enhancement λ = 1 in Ru and Fe phosphides, Phys. Rev. B 84 (2011), pp. 224507-1–224507-5.
  • E. Razzoli, M. Kobayashi, V.N. Strocov, B. Delley, Z. Bukowski, J. Karpinski, N.C. Plumb, M. Radovic, J. Chang, T. Schmitt, L. Patthey, J. Mesot, and M. Shi, Bulk electronic structure of superconducting LaRu2P2 single crystals measured by soft-x-ray angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 108 (2012), pp. 257005-1–257005-5.
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009), pp. 395502-1–395502-19.
  • A.B. Migdal, Interaction between electrons and lattice vibrations in a normal metal, Zh. Eksp. Teor. Fiz. 34 (1958), pp. 996–1001.
  • G.M. Eliashberg, Interaction between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP. 11 (1960), pp. 696–702.
  • P.B. Allen, Neutron spectroscopy of superconductors, Phys. Rev. B 6 (1972), pp. 2577–2579.
  • P.B. Allen and R.C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 12 (1975), pp. 905–922.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990), pp. 7892–7895.
  • A.M. Rappe, K.M. Rabe, E. Kaxiras, and J.D. Joannopoulos, Optimized pseudopotentials, Phys. Rev. B 41 (1990), pp. 1227–1230.
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), pp. A1133–A1138.
  • H.J. Monkhorst and J.D. Pack, Special points for brillonin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.
  • S. Ba\v{g}cı, S. Duman, H.M. Tütüncü, and G.P. Srivastava, Ground state, phonon spectrum, and superconducting properties of the nonoxide perovskite CdCNi3, Phys. Rev. B. 78 (2008), pp. 174504-1–174504-6.
  • S. Ba\v{g}cı, H.M. Tütüncü, S. Duman, and G.P. Srivastava, Phonons and superconductivity in fcc and dhcp lanthanum, Phys. Rev. B 81 (2010), pp. 144507-1–144507-9.
  • H.M. Tütüncü, S. Ba\v{g}c\i, G.P. Srivastava, and A. Akbulut, Electrons, phonons and superconductivity in rocksalt and tungsten-carbide phases of CrC, J. Phys.: Condens. Matter 24 (2012), pp. 455704-1–455704-12.
  • F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Nat. Acad. Sci. 30 (1944), pp. 244–247.
  • M. Wells, M. Pickus, K. Kennedy, and V. Zackay, Superconductivity of solids solutions of TaC and NbC, Phys. Rev. Lett. 12 (1964), pp. 536–538.
  • B.M. Klein and D.A. Papaconstantopoulos, Electron-phonon interaction and superconductivity in transition metals and transition-metal carbides, Phys. Rev. Lett. 32 (1974), pp. 1193–1195.
  • M. Gupta and A.J. Freeman, Direct correlation of phonon anomalies in NbC with fermi-surface-induced maxima in generalized susceptibilities, Phys. Rev. Lett. 37 (1976), pp. 364–367.
  • W. Kress, P. Roedhammer, H. Bilz, W.D. Teuchert, and A.N. Christensen, Phonon anomalies in transition-metal nitrides: TiN, Phys. Rev. B 17 (1978), pp. 111–113.
  • P. Roedhammer, W. Reichardt, and F. Holtzberg, Soft-mode behavior in the phonon dispersion of YS, Phys. Rev. Lett. 40 (1978), pp. 465–468.
  • M. Gupta, Electronic instability and phonon softening in YS, Phys. Rev. B 20 (1979), pp. 4334–4342.
  • X.W. Wang, B.N. Harmon, Y. Chen, K.-M. Ho, C. Stassis, and W. Weber, Anomalous lattice dynamics of fcc lanthanum, Phys. Rev. B 33 (1986), pp. 3851–3856.
  • R. Heid, B. Renker, H. Schober, P. Adelmann, D. Ernst, and K.-P. Bohnen, Phonon spectrum and soft-mode behavior of MgCNi3, Phys. Rev. B 69 (2004), pp. 092511-1–092511-4.
  • R. Heid, K.-P. Bohnen, B. Renker, T. Wolf, and H. Schober, Ab initio lattice dynamics and electron-phonon coupling in the refractory compounds ZrN and HfN, Phys. Rev. B 71 (2005), pp. 092302-1–092302-4.
  • E.I. Isaev, S.I. Simak, I.A. Abrikosov, R. Ahuja, YuKh Vekilov, M.I. Katsnelson, A.I. Lichtenstein, and B. Johansson, Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study, J. Appl. Phys. 101 (2007), pp. 123519-1–123519-18.
  • S. Kuroiwa, A.Q.R. Baron, T. Muranaka, R. Heid, K.-P. Bohnen, and J. Akimitsu, Soft-phonon-driven superconductivity in CaAlSi as seen by inelastic x-ray scattering, Phys. Rev. B 77 (2008), pp. 140503-1–140503-14.
  • H.M. Tütüncü, H.Y. Uzunok, E. Karaca, G. P. Srivastava, S. Özer, and \d{S} U\v{g}ur, Ab initio investigation of BCS-type superconductivity in LuNi2B2C-type superconductors, Phys. Rev. B 92 (2015), pp. 054510-1–054510-17.
  • K. Bennemann and J. Garland, Possibility of excitonic superconductivity, in Superconductivity in d- and f-Band Metals, D.H. Douglass, ed., AIP Conf. Proc. No. 4, New York, 1972, p. 103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.