423
Views
12
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Constitutive description of primary and steady-state creep deformation behaviour of tempered martensitic 9Cr–1Mo steel

&
Pages 2256-2279 | Received 02 Mar 2016, Accepted 30 May 2016, Published online: 24 Jun 2016

References

  • F.H. Norton, The Creep of Steel at High Temperatures, McGraw-Hill, New York, NY, 1929.
  • S.R. Holdsworth, M. Askins, A. Baker, E. Gariboldi, S. Holmström, A. Klenk, M. Ringel, G. Merckling, R. Sandstrom, M. Schwienheer, and S. Spigarelli, Factors influencing creep model equation selection, Int. J. Pres. Ves. Piping 85 (2008), pp. 80–88.
  • E.N. Da and C. Andrade, On Viscous flow in metals and allied phenomena, Proc. R. Soc. A 84 (1910), pp. 1–12.
  • P.G. McVetty, Working stresses for high temperature service, Mech. Eng. 56 (1934), pp. 149–154.
  • F. Garofalo, Fundamentals of Creep and Creep Rupture in Metals, Macmillan, New York, NY, 1965.
  • J.C.M. Li, A dislocation mechanism for transient creep, Acta Metall. 11 (1963), pp. 1269–1270.
  • N.S. Akulov, On the dislocation kinetics, Acta Metal. 12 (1964), pp. 1195–1196.
  • A.K. Mukherjee, J.E. Bird, and J.E. Dorn, Experimental correlation for high-temperature creep, Trans. ASM 62 (1969), pp. 155–179.
  • D. Sidey and B. Wilshire, Mechanisms of creep and recovery in nimonic 80 A, Met. Sci. J. 3 (1969), pp. 56–60.
  • K. Milicka, F. Dobes, J. Slamenikova, and A. Orlova, Constitutive description of creep curves based on internal stress evolution, Acta Metall. Mater. 43 (1995), pp. 3947–3957.
  • A. Orlova and F. Dobes, Internal stress and heterogeneous dislocation structure in creep, Philos. Mag. 83 (2003), pp. 2681–2691.
  • A. Orlova, Relation between the internal stress measured in creep and the stress generated by the dislocation structure in the fcc metals, Philos. Mag. 84 (2004), pp. 3419–3426.
  • I. Saxl and F. Kroupa, Relations between the experimental parameters describing the steady-state and transient creep, Phys. Stat. Sol. A 11 (1972), pp. 167–173.
  • F. Dobes, Stochastic approach to the interpretation of measured effective stress, Phys. Stat. Sol. A 34 (1976), pp. K27–K29.
  • C.N. Ahlquist and W.D. Nix, The measurement of internal stresses during creep of Al and Al–Mg alloys, Acta Metall. 19 (1971), pp. 373–385.
  • C. Shaker and E. El-Magd, Behaviour of high-temperature materials under time-dependent-creep conditions, in High temperature Materials For Power engineering, 1990, Part II, E. Bachelet, R. Brunetaud, D. Coutsouradis, P. Esslinger, J. Ewald, I. Kvernes, Y. Lindblom, D.B. Meadowcroft, V. Regis, R.B. Scarlin, K. Schneider, and R. Singer, eds., Kulwer Academic Publishers, Dordrecht, 1990, pp. 1097–1106.
  • L. Esposto and N. Bonora, A primary creep model for Class M materials, Mater. Sci. Eng. A 528 (2011), pp. 5496–5501.
  • B.K. Choudhary, S. Saroja, K. Bhanu Sankara Rao, and S.L. Mannan, Creep-rupture behaviour of forged thick section 9Cr–1Mo ferritic steel, Metall. Mater. Trans. A 30 (1999), pp. 2825–2834.
  • B. Raj, B.K. Choudhary, and R.K. Singh Raman, Mechanical properties and non-destructive evaluation of chromium-molybdenum ferritic steels for steam generator application, Int. J. Pres. Ves. Piping 81 (2004), pp. 521–534.
  • A. Alamo, J.L. Bertin, V.K. Shamardin, and P. Wident, Mechanical properties of 9Cr martensitic steels and ODS-FeCr alloys after neutron irradiation at 325 °C up to 42 dpa, J. Nucl. Mater. 367–370 (2007), pp. 54–59.
  • K.J. Harrelson, S.H. Rou, and R.C. Wilcox, Impurity element effects on the toughness of 9Cr–1Mo steel, J. Nucl. Mater. 141–143 (1986), pp. 508–512.
  • J.L. Seran, J.C. Brachet, and A. Alamo, Ferritic-martensitic steels for fast reactors cores, in Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssière, eds., Elsevier, Amsterdam, 2001, pp. 2863–2866.
  • K. Maruyama, K. Sawada, and J. Koike, Strengthening mechanisms of creep resistant tempered martensitic steel, ISIJ Int. 41 (2001), pp. 641–653.
  • J. Friedel, Dislocations, Pergamon Press, Oxford, 1964.
  • Y. Estrin and H. Mecking, A unified phenomenological description of work hardening and creep based on one parameter models, Acta Metall. 32 (1984), pp. 57–70.
  • E. Orowan, Problems of plastic gliding, Proc. Phys. Soc. 52 (1940), pp. 8–22.
  • G.I. Taylor, A theory of plasticity of crystals, Z. Kristallogr. 89 (1934), pp. 375–385.
  • A. Seeger, The mechanism of glide and work hardening in face-centered cubic and hexagonal close-packed metals in dislocations and mechanical properties of crystals, in Dislocations and Mechanical Properties of Crystals, J.C. Fisher, W.G. Johnston, R. Thomson, and T. Vreeland Jr, eds., General Electric, Schenectady, NY, 1957, pp. 243–329.
  • G.B. Gibbs, Thermodynamic analysis of dislocation glide controlled by dispersed local obstacles, Mater. Sci. Eng. 4 (1969), pp. 313–328.
  • G.B. Gibbs, The thermodynamics of creep deformation, Phys. Stat. Sol. 5 (1964), pp. 693–696.
  • G.B. Gibbs, The thermodynamics of thermally-activated dislocation glide, Phys. Stat. Sol. 10 (1965), pp. 507–512.
  • A. Manonukul, F.P.E. Dunne, and D. Knowles, Physically-based model for creep in nickel-base superalloy C263 both above and below the gamma solvus, Acta Mater. 50 (2002), pp. 2917–2931.
  • D.J. Lloyd, Precipitation hardnening, in Strength of Metals and Alloys (ICSMA 7), vol. 3, H.J. McQueen, J.P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergmon Press, Oxford, 1985, pp. 1745–1748 .
  • B.A. Senior, F.W. Noble, and B.L. Eyre, The nucleation and growth of voids at carbides in 9 Cr–1 Mo steel, Acta Metall. 34 (1986), pp. 1321–1327.
  • C.A. Hippsley and N.P. Haworth, Hydrogen and temper embrittlement in 9Cr–1Mo steel, Mater. Sci. Technol. 4 (1988), pp. 791–802.
  • J. Nocedal and S.J. Wright, Numerical Optimization, Springer Series in Operation Research, Springer, New York, NY, 2006.
  • Y. Estrin, Dislocation density related constitutive modelling, in Unified Constitutive Laws of Plastic deformation, A.S. Krausz and K. Krausz, eds., Academic Press, San Diego, CA, 1996, pp. 69–104.
  • Y. Estrin, H. Braasch, and Y. Brechet, A dislocation density based constitutive model for cyclic deformation, J. Eng. Mater. Tech. 118 (1996), pp. 441–447.
  • L. Wang, M. Li, and J. Almer, Investigation of deformation and microstructural evolution in grade 91 ferritic-martensitic steel by in situ high-energy X-rays, Acta Mater. 62 (2014), pp. 239–249.
  • H.S. Chen, J. Gilman, and A.K. Head, Dislocation multipoles and their role in strain hardening, J. Appl. Phys. 35 (1964), pp. 2502–2514.
  • J.C.M.Li, Kinetics and dynamics in dislocation plasticity, in Dislocation Dynamics, A.R. Rosenfield, G.T. Hahn, A.L. Bement Jr., and R.I. Jaffee, McGraw-Hill, New York, NY, 1968, pp. 87–116.
  • W.D. Nix, W.A. Coghlan, and C.R. Barrett, Effect of internal stresses on the apparent stress dependence of dislocation velocities, Mater. Sci. Eng. 4 (1969), pp. 98–105.
  • M. Pahutova, T. Hostinsky, and J. Cadek, Dynamics of dislocations in high temperature creep of an Fe-3.5% Si alloy, Acta Metall. 20 (1972), pp. 693–702.
  • F. Groisbock and F. Jeglitsch, Internal and effective stresses in high-temperature creep evaluated from transient dip tests and dislocation bowing, J. Mater. Sci. 27 (1992), pp. 4365–4372.
  • H. Hayakawa, S. Nakashima, J. Kusumoto, A. Kanaya, and H. Nakashima, Creep deformation characterization of heat resistant steel by stress change test, Int. J. Pres. Ves. Piping 86 (2009), pp. 556–562.
  • B.K. Choudhary, K.B.S. Rao, and S.L. Mannan, Steady state creep deformation behaviour of 9Cr–1Mo ferritic steel forging in quenched and tempered condition, Trans. Ind. Ins. Met. 52 (1999), pp. 327–336.
  • T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, and K.K. Rink, Creep deformation mechanisms in modified 9Cr–1Mo steel, J. Nucl. Mater. 423 (2012), pp. 110–119.
  • K. Kimura, H. Kushima, and K. Sawada, Long-term creep deformation property of modified 9Cr–1Mo steel, Mater. Sci. Eng. A 510–511 (2009), pp. 58–63.
  • A. Fedoseeva, N. Dudova, and R. Kaibyshev, Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel, Mater. Sci. Eng. A 654 (2016), pp. 1–12.
  • K. Milicka, Constant structure experiments in high temperature primary creep of some metallic materials, Acta. Metall. Mater. 42 (1994), pp. 4189–4199.
  • T. Surek, M.J. Luton, and J.J. Jonas, On the pre-exponential factor in the rate equation for plastic flow, Phys. Stat. Sol. B 57 (1973), pp. 647–659.
  • H. Kauzmann, Flow of solid metals from the standpoint of the chemical-rate theory, Trans. Am. Inst. Min. Metall. Eng. 143 (1941), pp. 57–83.
  • M. Tamura and F. Abe, Changes in estimated dislocation density during creep in martensitic heat-resistant steel, J. Mat. Sci. Res. 4 (2015), pp. 48–69.
  • D. McLean, The physics of high temperature creep in metals, Rep. Prog. Phys. 29 (1966), pp. 1–33.
  • R. Lagenborg and B.H. Forsen, A model based on dislocation distributions for work-hardening and the density of mobile and immobile dislocations during plastic flow, Acta Metall. 21 (1973), pp. 781–790.
  • R. Lagnerborg, Dislocation mechanisms in creep, Inter. Metall. Rev. 17 (1972), pp. 130–146.
  • L. Shi and D.O. Northwood, Creep of an AISI 310 type stainless steel and its numerical simulation using the Öström-Lagneborg creep model, Acta Metall. Mater. 41 (1993), pp. 3393–3400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.