329
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Molecular dynamics simulations of the melting of Al–Ni nanowires

, &
Pages 2300-2310 | Received 18 Dec 2015, Accepted 01 Jun 2016, Published online: 17 Jun 2016

References

  • A.M. Nicholas, A. Boukai1, F. Diana, B. Gerardot, A. Badolate, P.M. Petroff, and J.R. Heath, Ultrahigh-density nanowire lattices and circuits, Science. 300 (2003), pp. 112–115.
  • Y. Huang, X. Duan, and C.M. Lieber, Nanowires for integrated multicolor nanophotonics, Nanophotonic Assemblies. 1 (2005), pp. 142–147.
  • Y. Wu, R. Fan, and P. Yang, Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires, Nano Lett. 2 (2002), pp. 83–86.10.1021/nl0156888
  • H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean, DNA-templated self-assembly of protein arrays and highly conductive nanowires, Science. 301 (2003), pp. 1882–1884.10.1126/science.1089389
  • N. Stojanovic, J.M. Berg, D.H.S. Maithripala, and M. Holtz, Direct measurement of thermal conductivity of aluminum nanowires, Appl. Phys. Lett. 95 (2009), p. 091905.10.1063/1.3216035
  • L. Hui, F. Pederiva, B.L. Wang, J.L. Wang, and G.H. Wang, How does the nickel nanowire melt?, Appl. Phys. Lett. 86 (2005), p. 011913.10.1063/1.1844046
  • G. Bilalbegović, Metallic nanowires: multi-shelled or filled? Comput. Mater. Sci. 18 (2000), pp. 333–338.10.1016/S0927-0256(00)00113-0
  • C. Ma, Y. Berta, and Z.L. Wang, Patterned aluminum nanowires produced by electron beam at the surfaces of AlF3 single crystals, Solid State Commun. 129 (2004), pp. 681–685.10.1016/j.ssc.2003.08.015
  • O. Gülseren, F. Ercolessi, and E. Tosatti, Premelting of thin wires, Phys. Rev. B. 51 (1995), pp. 7377–7380.10.1103/PhysRevB.51.7377
  • C. Cheng, X.X. Ding, F.J. Shi, Y. Cheng, X.T. Huang, S.R. Qi, and C. Tang, Preparation of aluminum borate nanowires, J. Cryst. Growth. 263 (2004), pp. 600–604.10.1016/j.jcrysgro.2003.11.052
  • T. Makita, K. Doi, K. Nakamura, and A. Tachibana, Structures and electronic properties of aluminum nanowires, J. Chem. Phys. 119 (2003), pp. 538–546.10.1063/1.1568086
  • H.S. Park and V. Laohom, Surface composition effects on martensitic phase transformations in nickel aluminium nanowires, Philos. Mag. 87 (2007), pp. 2159–2168.10.1080/14786430701199655
  • Y.T. Pang, G.W. Meng, L.D. Zhang, W.J. Shan, C. Zhang, X.Y. Gao, and A.W. Zhao, Synthesis of ordered Al nanowire arrays, Solid State Sci. 5 (2003), pp. 1063–1067.10.1016/S1293-2558(03)00088-8
  • J.W. Kang and H.J. Hwang, Molecular dynamics simulation study of the mechanical properties of rectangular Cu nanowires, J. Korean Phys. Soc. 38 (2001), pp. 695–700.
  • H.A. Wu, Molecular dynamics study of the mechanics of metal nanowires at finite temperature, Eur. J. Mech. A. Solids. 25 (2006), pp. 370–377.10.1016/j.euromechsol.2005.11.008
  • J. Davoodi, M. Ahmadi. Molecular dynamics simulation of elastic properties of CuPd nanowire. Composites Part B: Eng. 43 (2012), pp. 10–14.10.1016/j.compositesb.2011.04.023
  • K.R.S. Sankaranarayanan, V.R. Bhethanabotla, and B. Joseph, Molecular dynamics simulation study of phase transformations in transition bimetallic nanowires, J. Phys. Chem. C. 111 (2007), pp. 2430–2439.10.1021/jp066132h
  • H.S. Park, Stress-Induced martensitic phase transformation in intermetallic nickel aluminum nanowires, Nano Lett. 6 (2006), pp. 958–962.10.1021/nl060024p
  • E.P. George, M. Yamaguchi, K.S. Kumar, and C.T. Liu, Ordered intermetallics, Annu. Rev. Mater. Sci. 24 (1994), pp. 409–451.10.1146/annurev.ms.24.080194.002205
  • E.P. George, C.T. Liu, J.A. Horton, C.J. Sparks, M. Kao, H. Kunsmann, and T. King, Characterization, processing, and alloy design of NiAl-based shape memory alloys, Mater. Charact. 39 (1997), pp. 665–686.10.1016/S1044-5803(97)00149-6
  • K.K. Jee, P.L. Potapov, S.Y. Song, and M.C. Shin, Shape memory effect in NiAl and NiMn-based alloys, Scr. Mater. 36 (1997), pp. 207–212.10.1016/S1359-6462(96)00363-6
  • S. Rubini and P. Ballone, Quasiharmonic and molecular-dynamics study of the martensitic transformation in Ni–Al alloys, Phys. Rev. B. 48 (1993), pp. 99–111.10.1103/PhysRevB.48.99
  • Y.Y. Ye, C.T. Chan, K.M. Ho, and C.Z. Wang, Pseudoelastic behavior of hypostoichiometric NiAl alloys: A simple model, Phys. Rev. B. 49 (1994), pp. 5852–5857.10.1103/PhysRevB.49.5852
  • Y. Shao, P.C. Clapp, and J.A. Rifkin, Molecular dynamics simulation of martensitic transformations in NiAI, Metall. Mater. Trans. A. 27 (1996), pp. 1477–1489.10.1007/BF02649808
  • R. Meyer and P. Entel, Computer simulations of martensitic transformations in NiAl alloys, Computational Materials Science 10 (1998), pp. 10–15.10.1016/S0927-0256(97)00083-9
  • T. Li, J.W. Morris, and D.C. Chrzan, Ideal tensile strength of B2 transition-metal aluminides, Phys. Rev. B. 70 (2004), p. 054107.10.1103/PhysRevB.70.054107
  • D. Farkas, B. Mutasa, C. Vailhe, and K. Ternes, Interatomic potentials for B2 NiAl and martensitic phases, Modell. Simul. Mater. Sci. Eng. 3 (1995), pp. 201–214.10.1088/0965-0393/3/2/005
  • V. Paidar, L.G. Wang, M. Sob, and V. Vitek, A study of the applicability of many-body central force potentials in NiAl and TiAl, Modell. Simul. Mater. Sci. Eng. 7 (1999), pp. 369–381.10.1088/0965-0393/7/3/306
  • M. Šob, L.G. Wang, and V. Vitek, Local stability of higher-energy phases in metallic materials and its relation to the structure of extended defects, Comput. Mater. Sci. 8 (1997), pp. 100–106.10.1016/S0927-0256(97)00022-0
  • M. Ludwig and P. Gumbsch, An empirical interatomic potential for B2 NiAl, Modell. Simul. Mater. Sci. Eng. 3 (1995), pp. 533–542.10.1088/0965-0393/3/4/008
  • Schroll R., Vitek Vand Gumbsch P. Core properties and motion of dislocations in NiAl. Acta Mater. 46 (1998), pp. 903–918.10.1016/S1359-6454(97)00305-4
  • S.K. Das, J. Horbach, M.M. Koza, and S. Mavila, Influence of chemical short-range order on atomic diffusion in Al–Ni melts, Appl. Phys. Lett. 86 (2005), p. 011918.10.1063/1.1845590
  • A. Kerrache, J. Horbach, and K. Binder, Molecular-dynamics computer simulation of crystal growth and melting in Al50Ni50, EPL (Europhys. Lett.) 81 (2008), p. 58001.10.1209/0295-5075/81/58001
  • M.S. Daw and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984), p. 6443.10.1103/PhysRevB.29.6443
  • R.A. Johnson, Alloy models with the embedded-atom method, Phys. Rev. B. 39 (1989), p. 12554.10.1103/PhysRevB.39.12554
  • X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, and T.F. Kelly, Atomic scale structure of sputtered metal multilayers, Acta Mater. 49 (2001), p. 4005.10.1016/S1359-6454(01)00287-7
  • X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B. 69 (2004), p. 144113.10.1103/PhysRevB.69.144113
  • S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984), pp. 511–519.10.1063/1.447334
  • W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A. 31 (1985), pp. 1695–1697.10.1103/PhysRevA.31.1695
  • H. Rafii-Tabar and A. Chirazi, Multi-scale computational modelling of solidification phenomena, Phys. Rep. 365 (2002), pp. 145–249.10.1016/S0370-1573(02)00028-5
  • J.M. Haile, Molecular Dynamics Simulation, Wiley-Interscience Publication, New York, 1992.
  • E. Asadi, M.A. Zaeem, S. Nouranian, and M.I. Baskes, Two-phase solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method, Acta Mater. 86 (2015), pp. 169–181.10.1016/j.actamat.2014.12.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.