311
Views
15
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Structural, electronic, optical and elastic properties of the complex K2PtCl6-structure hydrides ARuH6 (A = Mg, Ca, Sr and Ba): first-principles study

, , , , &
Pages 2328-2361 | Received 17 Jan 2016, Accepted 02 Jun 2016, Published online: 27 Jun 2016

References

  • R.O. Moyer Jr., C. Stanitski, and J. Tanaka, Ternary hydrides of calcium and strontium with iridium, rhodium and ruthenium, J. Solid State Chem. 3 (1971), pp. 541–549.10.1016/0022-4596(71)90100-9
  • M. Kritikos, D. Noréus, B. Bogdanović, and U. Wilczok, Mg2OsH6, a new ternary hydride with the K2PtCI6,- Type structure, J. Less Common Met. 161 (1990), pp. 337–340.10.1016/0022-5088(90)90045-L
  • M. Kritikos and D. Noréus, Synthesis and characterization of ternary alkaline-earth transition-metal hydrides containing octahedral [Ru(II)H6]−4 and [Os(II)H6]−4 complexes, J. Solid State Chem. 93 (1991), pp. 256–262.10.1016/0022-4596(91)90297-U
  • B. Huang, F. Bonhomme, P. Selvam, and K. Yvon, New ternary and quaternary metal hydrides with K2PtCl6,-type structures, J. Less Common Met. 171 (1991), pp. 301–311.10.1016/0022-5088(91)90152-T
  • F. Bonhomme, K. Yvon, G. Triscone, K. Jansen, G. Auffermann, P. Müller, W. Bronger, and P. Fischer, Orthorhombic dimagnesium ruthenium tetrahydride containing a diamagnetic [RuH4]4- complex anion with C2v symmetry, J. Alloys Compd. 178 (1992), pp. 161–166.10.1016/0925-8388(92)90257-A
  • H. Hagemann and R.O. Moyer, Raman spectroscopy studies on M2RuH6 where M=Ca, Sr and Eu, J. Alloys Compd. 330–332 (2002), pp. 296–300.10.1016/S0925-8388(01)01540-7
  • M.M. Barsan, I.S. Butler, D.F.R. Gilson, R.O. Moyer Jr., W. Zhou, H. Wu, and T.J. Udovic, Raman, FTIR, Photoacoustic-FTIR and inelastic neutron scattering spectra of alkaline earth and lanthanide salts of hexahydridoruthenate(II), A2RuH6, (A = Ca, Sr, Eu) and their deuterides, J. Phys. Chem A 112 (2008), pp. 6936–6938.10.1021/jp803013h
  • L. George, V. Drozd, A. Durygin, J. Chen, and S.K. Saxena, Bulk modulus and thermal expansion coefficient of mechanochemically synthesized Mg2FeH6 from high temperature and high pressure studies, Int. J. Hydrogen Energy. 34 (2009), pp. 3410–3416.10.1016/j.ijhydene.2009.02.043
  • K. Kadir, D. Moser, M. Münzel, and D. Noréus, Investigation of Counterion Influence on an octahedral IrH6- complex in the solid state hydrides AAeIrH6 (A = Na, K and Ae = Ca, Sr, Ba, and Eu) with a new structure type, Inorg. Chem. 50 (2011), pp. 11890–11895.10.1021/ic200662m
  • H. Hagemann, V. D’Anna, L.M. Lawson Daku, S. Gomes, G. Renaudin, and K. Yvon, Structural and vibrational properties of Ca2FeH6 and Sr2RuH6, J. Phys. Chem. Solids. 72 (2011), pp. 286–289.10.1016/j.jpcs.2011.01.001
  • B. Huang, K. Yvon, and P. Fischer, LiMgERuH7, a new quaternary metal hydride containing octahedral, [Ru(II)H6]4– complex anions, J. Alloys Compd. 210 (1994), pp. 243–246.10.1016/0925-8388(94)90144-9
  • B. Huang, P. Fischer, and K. Yvon, LiMg4Os2H13 containing double layers of octahedral [Os(II)H6]4− complexes, J. Alloys Compd. 245 (1996), pp. L24–L27.10.1016/S0925-8388(96)02496-6
  • R.O. Moyer Jr., D.F.R. Gilson, and B.H. Toby, Neutron powder diffraction, and solid-state deuterium NMR analyses of Yb2RuD6 and spectroscopic vibrational analysis of Yb2RuD6 and Yb2RuH6, J. Solid State Chem. 184 (2011), pp. 1895–1898.
  • F. Bonhomme, K. Yvon, and P. Fischer, Tetragonal trimagnesium ruthenium trideuteride, Mg3RuD3, containing dinuclear [Ru2D6]12– complex anions, J. Alloys Compd. 186 (1992), pp. 309–314.10.1016/0925-8388(92)90017-4
  • W. Bronger, K. Jansen, and G. Auffermann, Mg3RuH6, a complex hydride containing two types of hydrogen atoms differing in their bonding, J. Alloys Compd. 199 (1993), pp. 47–51.10.1016/0925-8388(93)90425-M
  • P. Chen, Z.T. Xiong, J.Z. Luo, J.Y. Lin, and K.L. Tan, Interaction of hydrogen with metal nitrides and imides, Nature 420 (2002), pp. 302–304.10.1038/nature01210
  • L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001), pp. 353–358.10.1038/35104634
  • J.N. Huiberts, R. Griessen, J.H. Rector, J.H. Recor, R.J. Wijngaarden, J.P. Dekker, D.G. de Groort, and N.J. Koeman, Yttrium and lanthanum hydride films with switchable optical properties, Nature 380 (1996), pp. 231–234.10.1038/380231a0
  • F.J.A. den Broeder, S.J. van der Molen, M. Kremers, J.N. Huiberts, D.G. Nagengast, A.T.M. van Gogh, W.H. Huisman, N.J. Koeman, N.I. Koeman, B. Dam, J.H. Rector, S. Plota, M. Haaksma, R.M.N. Hanzen, R.M. Jungblut, P.A. Duine, and R. Griessen, Visualization of hydrogen migration in solids using switchable mirrors, Nature 394 (1998), pp. 656–658.
  • J.W.J. Kerssemakers, S.J. van der Molen, N.J. Koeman, R. Günther, and R. Griessen, Pixel switching of epitaxial Pd/YHx/CaF2 switchable mirrors, Nature 406 (2000), pp. 489–491.
  • J.L.M. van Mechelen, B. Noheda, W. Lohstroh, R.J. Westerwaal, J.H. Rector, B. Dam, and R. Griessen, Mg–Ni–H films as selective coatings: Tunable reflectance by layered hydrogenation, Appl. Phys. Lett. 84 (2004), pp. 3651–36523.10.1063/1.1739520
  • T.J. Richardson, J.L. Slack, R.D. Armitage, R. Farangis, and M.D. Rubin, Switchable mirrors based on nickel–magnesium films, Appl. Phys. Lett. 78 (2001), pp. 3047–3049.10.1063/1.1371959
  • K.M. Nicholson and D.S. Sholl, First-principles prediction of new complex transition metal hydrides for high temperature applications, Inorg. Chem. 53 (2014), pp. 11849–11860.10.1021/ic501992x
  • P. Vajeeston, Theoretical modelling of hydrides, Ph.D. thesis, Faculty of Mathematics and Natural Sciences, Department of Physics, University of Oslo, 2004, pp. 1–81. ISSN 1501-7710, No. 390
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), pp. 11169–11186.10.1103/PhysRevB.54.11169
  • S. Bouras, B. Ghebouli, M. Benkerri, M.A. Ghebouli, H. Choutri, L. Louail, T. Chihi, M. Fatmi, A. Bouhemadou, R. Khenata, and H. Khachai, Theoretical characterization of quaternary iridium based hydrides NaAeIrH6 (Ae = Ca, Ba and Sr), Mater. Chem. Phys. 149–150 (2015), pp. 87–93.10.1016/j.matchemphys.2014.09.040
  • S. Bouras, B. Ghebouli, M. Benkerri, M.A. Ghebouli, and A. Bouhemadou, First-principles calculations on elastic, electronic and optical properties for the alkaline platinum hydrides A2PtH6 (A= K, Rb and Cs), Mater. Sci. Semicond. Process. 16 (2013), pp. 940–946.10.1016/j.mssp.2013.01.024
  • M.A. Ghebouli, H. Choutri, N. Bouarissa, B. Ghebouli, A. Bouhemadou, F. Soyalp, E. Uçgun, and H.Y. Ocak, Theoretical prediction of the fundamental properties for the ternary Li2PtH6 and Na2PtH6, J. Solid State Chem. 196 (2012), pp. 498–503.10.1016/j.jssc.2012.06.044
  • S.Z. Karazhanov, U. Sheripov, and A.G. Ulyashin, Classification of hydrides according to features of band structure, Philos. Mag. 89 (2009), pp. 1111–1120.10.1080/14786430902893163
  • S.Z. Karazhanov and A.G. Ulyashin, Similarity of optical properties of hydrides and semiconductors for antireflection coatings, Philos. Mag. 90 (2010), pp. 2925–2937.10.1080/14786431003745294
  • K.M. Nicholson and D.S. Sholl, First-principles screening of complex transition metal hydrides for high temperature applications, Inorg. Chem. 53 (2014), pp. 11833–11848.10.1021/ic501990p
  • B. Bogdanovic, A. Reiser, K. Schlichte, B. Spliethoff, and B. Tesche, Thermodynamics and dynamics of the Mg–Fe–H system and its potential for thermochemical thermal energy storage, J. Alloys Compd. 345 (2002), pp. 77–89.10.1016/S0925-8388(02)00308-0
  • S.Z. Karazhanov, A.G. Ulyashin, P. Ravindran, and P. Vajeeston, Semiconducting hydrides, 82, Phys. Lett. 17006 (2008), pp. 1–5.
  • S.Z. Karazhanov, P. Ravindran, P. Vajeeston, and A.G. Ulyashin, Hydrides as materials for semiconductor electronics, Philos. Mag. 88 (2008), pp. 2461–2476.10.1080/14786430802360362
  • S.Z. Karazhanov and A.G. Ulyashin, Similarity of electronic structure and optical properties of Mg2 NiH4 and Si, Phys. Lett. 82 (2008), pp. 1–6.
  • S.Z. Karazhanov, A.G. Ulyashin, P. Ravindran, and P. Vajeeston, Hydride electronics, Phys. Status Solidi (a) 204 (2007), pp. 3538–3544.10.1002/pssa.v204:10
  • E. Orgaz and A. Aburto, Electronic structure of ternary ruthenium-based hydrides, J. Phys. Chem. C 112 (2008), pp. 15586–15594.10.1021/jp8035605
  • S.V. Halilov, D.J. Singh, M. Gupta, and R. Gupta, Stability and electronic structure of the complex K2PtCl6-structure hydrides DMH6 (D = Mg, Ca, Sr; M = Fe, Ru, Os), Phys. Rev. B 70 (2004), pp. 1–6.
  • M. Gupta, Electronic structure of intermetallic hydrides: Mg2FeH6 and Ca2RuH6, J. Less Common Met. 103 (1984), pp. 325–335.10.1016/0022-5088(84)90256-X
  • D.F.R. Gilson and R.O. Moyer Jr., Counterion influence on the vibrational wavenumbers in ternary and quaternary metal hydride salts, A2MH6 (A = Alkali Metal, Alkaline Earth, and Lanthanides; M = Ir, Fe, Ru, Os, Pt, Mn), Inorg. Chem. 51 (2012), pp. 1231–1232.10.1021/ic202534p
  • M.M. Barsan, R.O. Moyer Jr., I.S. Butler, and D.F.R. Gilson, Pressure dependence of the Raman spectra of salts of hexahydridoruthenate(II), M2RuH6 (M = Ca, Sr, Eu) and their deuteride analogues, J. Alloys Compd. 424 (2006), pp. 73–77.10.1016/j.jallcom.2005.12.059
  • L.M.L. Daku and H. Hagemann, First-principles study of the pressure dependence of the structural and vibrational properties of the ternary metal hydride Ca2RuH6, Phys. Rev. B 76 (2007), pp. 1–7.
  • C.S. Wang and W.T. Pickett, Density-functional theory of excitation spectra of semiconductors: application to si, Phys. Rev. Lett. 51 (1983), pp. 597–600.10.1103/PhysRevLett.51.597
  • W.G. Aulbur, L. Jönsson, and J.W. Wilkins, Quasiparticle calculations in solids, Solid State Phys. 54 (2000), pp. 1–218.
  • S.Zh. Karazhanov, P. Ravindran, H. Fjellvag, and B.G. Svensson, Electronic structure and optical properties of ZnSiO3 and Zn2SiO4, J. Appl. Phys. 106(123701) (2009), pp. 1–7.
  • S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, First principles methods using castep, Zeitschrift fuer Kristallographie [Int. J. Crystallogr.] 220 (2005), pp. 567–570.
  • J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981), pp. 5048–5079.10.1103/PhysRevB.23.5048
  • J.P. Perdew, Kieron Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.10.1103/PhysRevLett.77.3865
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 10 (2008), pp. 1–4.
  • D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalisms, Phys. Rev. B 41 (1990), pp. 7892–7895.10.1103/PhysRevB.41.7892
  • J.D. Pack and H.J. Monkhorst, ‘Special points for Brillonln-zone integrations’ – A reply, Phys. Rev. B 16 (1977), pp. 1748–1749.10.1103/PhysRevB.16.1748
  • T.H. Fischer and J. Almlof, General methods for geometry and wave function optimization, J. Phys. Chem. 96 (1992), pp. 9768–9774.10.1021/j100203a036
  • W. Voigt, Lehrbuch der Kristallphysik [Textbook of crystal physics], Taubner, Leipzig, 1928.
  • A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle (Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals), ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik 9 (1929), pp. 49–58.10.1002/(ISSN)1521-4001
  • R. Hill, The elastic behavior of a crystalline aggregate, Proc. Phys. Soc. London, Sect. A 65 (1952), pp. 349–354.10.1088/0370-1298/65/5/307
  • Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Fao, X.-J. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76 (2007), pp. 1–15.
  • F. Tran, P. Blaha, and K. Schwarz, Band gap calculations with Becke–Johnson exchange potential, J. Phys.: Condens. Matter 19 (2007), pp. 1–8.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2 k: An Augmented Plane wave + Local Orbitals Program for calculating Crystal Properties, University Karlheinz Schwarz, Techn. Universität Wien, Wien, Austria, 2013, pp. 1–238, ISBN 3-9501031-1-2.
  • F. Tran and P. Blaha, accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (2009), pp. 1–8.
  • A.D. Becke and E.R. Johnson, A simple effective potential for exchange, J. Chem. Phys. 124 (2006), pp. 1–4.
  • D. Koller, F. Tran, and P. Blaha, Merits and limits of the modified Becke–Johnson exchange potential, Phys. Rev. B 83 (2011), pp. 1–8.
  • C. Ambrosch-Draxl and J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented plane wave method, Comput. Phys. Commun. 175 (2006), pp. 1–14.10.1016/j.cpc.2006.03.005
  • F.D. Murnaghan, The compressibility of media under extreme pressure, Proc. Nat. Acad. Sci. 30 (1944), pp. 244–247.10.1073/pnas.30.9.244
  • F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71 (1947), pp. 1–16.
  • P. Vinet, J.H. Rose, J. Ferrante, and J.R. Smith, Compressibility of solids, J. Geophys. Res. 92 (1987), pp. 9319–9326.10.1029/JB092iB09p09319
  • E. Orgaz and M. Gupta, The electronic properties of intermetallic hydrides with the K2PtC16 structure, J. Phys: Condens. Matter 5 (1993), pp. 6697–6718.
  • M.H. Born, Dynamical theory of crystal lattices, Oxford University Press, New York, NY, 1988.
  • L.D. Landau and E.M. Lifshitz, Theory of elasticity, course of theoretical physics, Pergamon Press, New York, NY, 1980.
  • I.R. Shein, S.L. Skornyakov, V.I. Anisimov, A.L. Ivanovskii, Structural, elastic and electronic properties of new layered superconductor HfCuGe2 in comparison with isostructural HfCuSi2, ZrCuGe2, and ZrCuSi2 from first-principles calculations, Intermetallics, 42 (2013), pp. 130–136.
  • S.F. Pugh, Relations between the elastic moduli and plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954), pp. 823–843.
  • O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963), pp. 909–917.10.1016/0022-3697(63)90067-2
  • P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998), pp. 4891–4904.10.1063/1.368733
  • P. Lloveras, T. Castán, M. Porta, A. Planes, and A. Saxena, Influence of elastic anisotropy on structural nanoscale textures, Phys. Rev. Lett. 100(165707) (2008), pp. 1–4.
  • A.G. Every, General closed-form expressions for acoustic waves in elastically anisotropic solids, Phys. Rev. B 22 (1980), pp. 1746–1760.10.1103/PhysRevB.22.1746
  • C. Zener, Elasticity and anelasticity of metals, University of Chicago Press, Chicago, IL, 1948.
  • R.E. Newnham, Properties of materials; Anisotropy, symmetry, structure, Oxford University Press, New York, NY, 2005.
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), pp. 1–4.
  • J.F. Nye, Properties of crystals, Oxford University Press, New York, NY, 1985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.