194
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructure formation and mechanical behaviour of titanium aluminides during torsion

, , &
Pages 2372-2384 | Received 12 Feb 2016, Accepted 04 Jun 2016, Published online: 27 Jun 2016

References

  • F. Appel and R. Wagner, Microstructure and deformation of two-phase γ-titanium aluminides, Mater. Sci. Eng. R. 22 (1998), pp. 187–268.10.1016/S0927-796X(97)00018-1
  • M. Yamaguchi, H. Inui, and K. Ito, High-temperature structural intermetallics, Acta Metall. 48 (2000), pp. 307–322.10.1016/S1359-6454(99)00301-8
  • F. Appel, P.A. Beaven, and R. Wagner, Deformation processes related to interfacial boundaries in two-phase γ-titanium aluminides, Acta Metall. Mater. 41 (1993), pp. 1721–1732.10.1016/0956-7151(93)90191-T
  • A. Menand, A. Huguet, and A. Nerac-partaix, Interstitial solubility in γ and α2 phases of TiAl-based alloys, Acta Mater. 44 (1996), pp. 4729–4737.10.1016/S1359-6454(96)00111-5
  • Y.L. Hao, D.S. Xu, Y.Y. Cui, R. Yang, and D. Li, The site occupancies of alloying elements in TiAl and Ti3Al alloys, Acta Mater. 47 (1999), pp. 1129–1139.10.1016/S1359-6454(99)00006-3
  • R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000), pp. 103–189.10.1016/S0079-6425(99)00007-9
  • R.Z. Valiev, I.V. Alexandrov, and Y.T. Zhu, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17 (2002), pp. 5–8.10.1557/JMR.2002.0002
  • M.S. Paterson and D.L. Olgaard, Rock deformation tests to large shear strains in torsion, J. Struct. Geo. 22 (2000), pp. 1341–1358.10.1016/S0191-8141(00)00042-0
  • S.M.L. Sastry and R.N. Mahapatra, Grian refinement of intermetallics by severe plastic deformation, Mater. Sci. Eng. A. 329–331 (2001), pp. 872–877.
  • S.M.L. Sastry, R.N. Mahapatra, and D.F. Hasson, Microstructural refinement of Ti-44Al-11Nb by severe plastic deformation, Scr. Mater. 42 (2000), pp. 731–736.10.1016/S1359-6462(99)00418-2
  • K. Edalati, S. Toh, H. Iwaoka, M. Watanabe, Z. Horita, D. Kashioka, K. Kishidae, and H. Inui, Ultrahigh strength and high plasticity in TiAl intermetallics with bimodal grain structure and nanotwins, Scr. Mater. 67 (2012), pp. 814–817.10.1016/j.scriptamat.2012.07.030
  • A.V. Korznikov, O. Dimitrov, G.F. Korznikova, J.P. Dallas, A. Quivy, R.Z. Valiev, and A. Mukherjee, Nanocrystalline structure and phase transformation of the intermetallic compound TiAl processed by severe plastic deformation, Nanostruct. Mater. 1 (1999), pp. 17–23.10.1016/S0965-9773(98)00157-3
  • U. Fröbel and F. Appel, Hot-workability of gamma-based TiAl alloys during severe torsional deformation, Metall. Mater. Trans. A. 38 (2007), pp. 1817–1832.10.1007/s11661-007-9203-9
  • G.H. Cao, W. Skrotzki, and T. Germming, Transmission electron microscopy investigation of Ti2Al precipitation in titanium aluminides during high-strain torsion, J. Alloys Compd. 417 (2006), pp. 169–172.10.1016/j.jallcom.2005.06.088
  • G.H. Cao, B. Klöden, E. Rybacki, C.G. Oertel, and W. Skrotzki, High strain torsion of a TiAl-based alloy, Mater. Sci. Eng. A. 483–484 (2008), pp. 512–516.10.1016/j.msea.2006.12.157
  • G.H. Cao, B. Klöden, C.G. Oertel, W. Skrotzki, U. Garbe, E. Rybacki, and H.G. Brokmeier, Shear texture formation during high-strain torsion of titanium aluminides, Solid. State. Phenom. 105 (2005), pp. 303–308.10.4028/www.scientific.net/SSP.105
  • F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring, and J.D.H. Paul, Recent progress in the development of gamma titanium aluminide alloys, Adv. Eng. Mater. 2 (2000), pp. 699–720.10.1002/(ISSN)1527-2648
  • F. Appel, M. Oehring, and R. Wagner, Novel design concepts for gamma-base titanium aluminide alloys, Intermetallics 8 (2000), pp. 1283–1312.10.1016/S0966-9795(00)00036-4
  • E. Rybacki, M.S. Paterson, R. Wirth, and G. Dresen, Rheology of calcite-quartz aggregates deformed to large strain in torsion, J. Geophys. Res. 108 (2003), p. 2089.
  • P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, and M.J. Whelan, Electron Microscopy of Thin Crystals, Robert E. Krieger Publishing, Huntington, NY, 1965.
  • G.H. Cao, G.J. Shen, Z.G. Liu, and J.-M. Liu, Microstructural characterization of V-doped single-phase titanium aluminide, Scr. Mater. 44 (2001), pp. 985–989.10.1016/S1359-6462(00)00691-6
  • M. Hasegawa, M. Yamamoto, and H. Fukutomi, Formation mechanism of texture during dynamic recrystallization in γ-TiAl, nickel and copper examined by microstructure observation and grain boundary analysis based on local orientation measurements, Acta Mater. 51 (2003), pp. 3939–3950.10.1016/S1359-6454(03)00218-0
  • W.J. Zhang, U. Lorenz, and F. Appel, Recovery, recrystallization and phase transformations during thermomechanical processing and treatment of TiAl-based alloys, Acta Mater. 48 (2000), pp. 2803–2813.10.1016/S1359-6454(00)00093-8
  • B. Skrotzki, T. Rudolf, A. Dlouhy, and G. Eggeler, Microstructural evidence for dynamic recrystallization during creep of a duplex near-γ TiAl-alloy, Scr. Mater. 39 (1998), pp. 1545–1551.10.1016/S1359-6462(98)00346-7
  • F. Appel, U. Christoph, and M. Oehring, Creep deformation in two-phase titanium aluminide alloys, Mater. Sci. Eng. A. 329–331 (2002), pp. 780–787.10.1016/S0921-5093(01)01633-1
  • S. Bystrzanowski, A. Bartels, H. Clemens, R. Gerling, F.P. Schimansky, G. Dehm, and H. Kestler, Creep behaviour and related high temperature microstructural stability of Ti-46Al-9Nb sheet material, Intermetallics 13 (2005), pp. 515–524.10.1016/j.intermet.2004.09.001
  • A. Denquin and S. Naka, Phase transformation mechanisms involved in two-phase TiAl-based alloys – I. Lambellar structure formation, Acta Mater. 44 (1996), pp. 343–352.10.1016/1359-6454(95)00167-4
  • A. Denquin and S. Naka, Phase transformation mechanisms involved in two-phase TiAl-based alloys – II. Discontinuous coarsening and massive-type transformation, Acta Mater. 44 (1996), pp. 353–365.10.1016/1359-6454(95)00168-6
  • G.H. Cao, A.M. Russell, C.-G. Oertel, and W. Skrotzki, Microstructural evolution of TiAl-based alloys deformed by high-pressure torsion, Acta Mater. 98 (2015), pp. 103–112.10.1016/j.actamat.2015.07.012
  • W. Sprengel, H. Nakajima, and H. Oikawa, Single-phase interdiffusion in TiAl and Ti3Al intermetallic compounds, Mater. Sci. Eng. A. 213 (1996), pp. 45–50.10.1016/0921-5093(96)10246-X
  • F. Appel, M. Oehring, J.D.H. Paul, Ch. Klinkenberg, and T. Carneiro, Physical aspects of hot-working gamma-based titanium aluminides, Intermetallics 12 (2004), pp. 791–802.10.1016/j.intermet.2004.02.042

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.