241
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evolution, migration and clustering of helium-vacancy complexes in RAFM steel- depth resolved positron annihilation Doppler broadening study

, , , &
Pages 2385-2396 | Received 29 Jan 2016, Accepted 07 Jun 2016, Published online: 04 Jul 2016

References

  • N. Baluc, R. Schaublin, P. Spatig, and M. Victoria, On the potentiality of using ferritic/martensitic steels as structural materials for fusion reactors, Nucl. Fusion. 44 (2004), pp. 56–61.10.1088/0029-5515/44/1/006
  • A. Kimura, Current status of Reduced Activation Ferritic/Martensitic steels R&D for fusion energy, Mater. Trans. 46 (2005), pp. 394–404.10.2320/matertrans.46.394
  • N. Baluc, Materials for fusion power reactors, Plasma Phys. Controlled Fusion 48 (2006) B, pp. 165–177.
  • N. Baluc, D.S. Gelles, S. Jitsukawa, A. Kimura, R.L. Klueh, G.R. Odette, B. van der Schaaf, and J. Yu, Status of Reduced Activation Ferritic/Martensitic steel development, J. Nucl. Mater. 367–370 (2007), pp. 33–41.10.1016/j.jnucmat.2007.03.036
  • K. Laha, S. Saroja, A. Moitra, R. Sandhya, M.D. Mathew, T. Jayakumar, and E. Rajendra Kumar, Development of India-Specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties, J. Nucl. Mater. 439 (2013), pp. 41–50.10.1016/j.jnucmat.2013.03.073
  • B. Raj and T. Jayakumar, Development of Reduced activation Ferritic-Martensitic steels and fabrication technologies for Indian test blanket module, J. Nucl. Mater. 417 (2011), pp. 72–76.10.1016/j.jnucmat.2011.02.032
  • B. Raj, K. Bhanu Sankara Rao, and A.K. Bhaduri, Progress in the development of reduced activation ferritic-martensitic steels and fabrication technologies in India, Fusion Eng. Des. 85 (2010), pp. 1460–1468.10.1016/j.fusengdes.2010.04.008
  • T. Jayakumar and E. Rajendra Kumar, Current status of technology development for fabrication of Indian Test Blanket Module (TBM) of ITER, Fusion Eng. Des. 89 (2014), pp. 1562–1567.10.1016/j.fusengdes.2014.05.021
  • R. Bhattacharyay and Indian TBM Team, Status of Indian LLCB TBM program and R&D activities, Fusion Eng. Des. 89 (2014), pp. 1107–1112.10.1016/j.fusengdes.2014.05.016
  • D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Department of Nuclear Engineering, California University, Berkeley, 1976.
  • R. Sugano, K. Morishita, A. Kimura, H. Iwakiri, and N. Yoshida, Micro structural evolution in Fe and Fe-Cr model alloys after He+ ion irradiations, J. Nucl. Mater. 329–333 (2004), pp. 942–946.10.1016/j.jnucmat.2004.04.059
  • M. Roldan, P. Fernandez, J. Rams, D. Jimenez-Rey, E. Materna-Morris, and M. Klimenkov, Comparative study of helium effects on EU-ODS EUROFER and EUROFER 97 by nanoindentation and TEM, J. Nucl. Mater. 460 (2015), pp. 226–234.10.1016/j.jnucmat.2015.02.025
  • A. Kimura, R. Kasada, R. Sugano, A. Hasegawa, and H. Matsui, Annealing behavior of irradiation hardening and microstructure in helium-implanted reduced activation martensitic steel, J. Nucl. Mater. 283–287 (2000), pp. 827–831.10.1016/S0022-3115(00)00090-8
  • G. Amarendra, B.K. Panigrahi, S. Abhaya, Christopher David, R. Rajaraman, K.G.M. Nair, C.S. Sundar, and Baldev Raj, Positron beam studies of void swelling in ion irradiated Ti- modified stainless steel, Appl. Surf. Sci. 255 (2008), pp. 139–141.
  • C. David, B.K. Panigrahi, G. Amarendra, S. Abhaya, S. Balaji, A.K. Balamurugan, K.G.M. Nair, B. Viswanathan, C.S. Sundar, and Baldev Raj, Void swelling in ion irradiated (15Ni- 14Cr), Ti-modified stainless steel: A study using positron annihilation and step height measurements, Surf. Coat. Technol. 203 (2009), pp. 2363–2366.
  • Q.-m. Wan, G.-g. Shu, R.-s. Wang, H. Ding, X. Peng, Q. Zhang, and J. Lei, Characterization of proton irradiation-induced defect in the A508-3 steel by slow positron beam, Nucl. Instrum. Methods Phys. Res. B. 287 (2012), pp. 148–152.
  • Y. Xin, J. Xin, J. Qiu, L. Guo, J. Chen, Z. Yang, P. Zhang, X. Cao, and B. Wang, Vacancy-type defects and hardness of helium implanted CLAM steel studied by positron-annihilation spectroscopy and nano-indentation technique, Fusion Eng. Des. 87 (2012), pp. 432–436.10.1016/j.fusengdes.2011.12.004
  • I. Carvalho, H. Schut, A. Fedorov, N. Luzginova, P. Desgardin, and J. Siestsma, Helium implanted Eurofer97 characterized by positron beam Doppler broadening and Thermal Desorption Spectroscopy, J. Nucl. Mater. 442 (2013), pp. 377–381.10.1016/j.jnucmat.2013.08.022
  • R. Kogler, W. Anwand, A. Richtler, M. Butterling, Xin Ou, A. Wagner, and C.-L. Chen, Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy, J. Nucl. Mater. 427 (2012), pp. 133–139.10.1016/j.jnucmat.2012.04.029
  • L. Eryang, X. Cao, S. Jin, Peng Zhang, C. Zhang, J. Yang, W. Yaru, L. Guo, and B. Wang, Investigation of vacancy-type defects in helium irradiated FeCrNi alloy by slow positron beam, J. Nucl. Mater. 458 (2015), pp. 240–244.
  • A. Debelle, M.F. Barthe, T. Sauvage, R. Belamhawal, A. Chelgoum, P. Desgardin, and H. Labrim, Helium behavior and vacancy defect distribution in helium implanted tungsten, J. Nucl. Mater. 362 (2007), pp. 181–188.10.1016/j.jnucmat.2007.01.021
  • The Stopping Range of Ions in Matter (SRIM), Available at www.srim.org
  • G. Amarendra, B. Viswanathan, G. Venugopal Rao, J. Parimala, and B. Purniah, Variable low energy positron beams for depth resolved defect spectroscopy in thin film structures, Curr. Sci. 73 (1997), pp. 409–417.
  • R. Krause-Rehberg and H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies Springer, Berlin, 1999.
  • A. van Veen, H. Schut, M. Clement, J.M.M. de Nijs, A. Kruseman, and M.R. Ijpma, VEPFIT applied to depth profiling problems, Appl. Surf. Sci. 85 (1995), pp. 216–224.10.1016/0169-4332(94)00334-3
  • A. van Veen, H. Schut, J. De Vries, R.A. Hakvoort, and M.R. Ijpma, Analysis of positron profiling data by means of “VEPFIT”, AIP Conf. Proc. 218 (1991), pp. 171–196.10.1063/1.40182
  • K.Q. Chen, Y.S. Wang, J.M. Quan, J.G. Sun, C.H. Zhang, and Z.Y. Zhao, The formation of helium bubbles in 316L SS irradiated with helium ions at different temperatures, J. Nucl. Mater. 212–215 (1994), pp. 345–351.10.1016/0022-3115(94)90084-1
  • G. Amarendra, B. Viswanathan, A. Bharathi, and K.P. Gopinathan, Nucleation and growth of helium bubbles in nickel studied by positron-annihilation spectroscopy, Phys. Rev. B 45 (1992), pp. 10231–10241.10.1103/PhysRevB.45.10231
  • G. Kogel, Q.-M. Fan, P. SPERR, W. Triftshauser, and B. Viswanathan, Helium irradiated nickel investigated by positron annihilation, J. Nucl. Mater. 127 (1985), pp. 125–131.10.1016/0022-3115(85)90345-9
  • Z.H. Luklinska, G.von Bradsky, and P.J. Goodhew, Helium bubble growth in ferritic stainless steel, J. Nucl. Mater. 135 (1985), pp. 206–214.10.1016/0022-3115(85)90080-7
  • C.-C. Fu, and F. Willaime, Ab initio study of helium in α-Fe: Dissolution, migration, and clustering with vacancies, Phys. Rev. B. 72 (2005), p. 064117.
  • I. Carvalho, H. Schut, A. Federov, N. Luzginova, P. Desgardin, and J. Sietsma, Dose effects in He implanted Eurofer97 steel, J. Phys. Conf. Ser. 505 (2014), p. 012019.
  • A. Vehanen, P. Hautojarvi, J. Johansson, J. Yli-Kauppila, and P. Moser, Vacancies and carbon impurities in α-iron: electron irradiation, Phys. Rev. B. 25 (1982), pp. 762–779.10.1103/PhysRevB.25.762
  • D. Terentyev, N. Juslin, K. Nordlund, and N. Sandberg, Fast three dimensional migration of He clusters in bcc Fe and Fe-Cr alloys, J. Appl. Phys. 105 (2009), p. 103509.10.1063/1.3126709
  • V.A. Borodin and P.V. Vladimirov, Diffusion coefficients and thermal stability of small helium-vacancy clusters in iron, J. Nucl. Mater. 362 (2007), pp. 161–166.10.1016/j.jnucmat.2007.01.019
  • V.A. Borodin and P.V. Vladimirov, Kinetic properties of small He-vacancy clusters in iron, J. Nucl. Mater. 386–388 (2009), pp. 106–108.
  • V. Sabelova, V. Krsjak, J. Kuriplach, Y. Dai, and V. Slugen, Coincidence Doppler broadening study of Eurofer97 irradiated in spallation environment, J. Nucl. Mater. 458 (2015), pp. 350–354.10.1016/j.jnucmat.2014.12.053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.