114
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microscopic mechanism responsible for radiation-enhanced diffusion of impurity atoms

Pages 2412-2428 | Received 22 Jun 2015, Accepted 08 Jun 2016, Published online: 10 Jul 2016

References

  • T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater. 2 (2010), pp. 96–102.
  • M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Solar cell efficiency tables (version 39), Prog. Photovoltaics Res. Appl. 20 (2012), pp. 12–20.
  • A. Haarahiltunen, H. Savin, M. Yli-Koski, H. Talvitie, and J. Sinkkonen, Modeling phosphorus diffusion gettering of iron in single crystal silicon, J. Appl. Phys. 105 (2009), pp. 023510-1–023510-4.
  • H. Talvitie, V. Vähänissi, A. Haarahiltunen, M. Yli-Koski, and H. Savin, Phosphorus and boron diffusion gettering of iron in monocrystalline silicon, J. Appl. Phys. 109 (2011), pp. 093505-1–093505-5.
  • S. Sepeai, M.Y. Sulaiman, K. Sopian, and S.H. Zaidi, Investigation of back surface fields effect on bifacial solar cells, AIP Conf. Proc. 1502 (2012), pp. 322–335. doi:10.1063/1.4769154.
  • H.B. Normann, L. Vines, V. Privitera, W. Skorupa, T. Schumann, B.G. Svensson, and E.V. Monakhov, Phosphorus in-diffusion from a surface source by millisecond flash lamp annealing for shallow emitter solar cells, Appl. Phys. Lett. 102 (2013), pp. 132108-1–132108-3.
  • I. Pintér, A.H. Abdulhadi, Zs. Makar{\’o}, N.Q. Khanh, M. {\’A}d{\’a}m, I. B{\’a}rsony, J. Poortmans, S. Sivoththaman, H.-Z. Song, and G.J. Adriaenssens, Plasma immersion ion implantation for shallow junctions in silicon, Appl. Surf. Sci. 138–139 (1999), pp. 224–227.
  • P.K. Chu, N.W. Cheung, C. Chan, B. Mizuno, and O.R. Monteiro, Semiconductor applications, in Handbook of Plasma Immersion Ion Implantation and Deposition, A. Anders, ed., Wiley, New York, 2000, pp. 637–681.
  • P.K. Chu, Recent developments and applications of plasma immersion ion implantation, J. Vac. Sci. Technol. B 22 (2004), pp. 289–296.
  • F. Torregrosa, C. Laviron, F. Milesi, M. Hernandez, H. Fa{\"{\i}}k, and J. Venturini, Ultra shallow P+/N junctions using plasma immersion ion implantation and laser annealing for sub 0.1 µm CMOS devices, Nucl. Instrum. Meth. B 237 (2005), pp. 18–24.
  • H. Strack, Ion bombardment of silicon in a glow discharge, J. Appl. Phys. 34 (1963), pp. 2405–2408.
  • D.G. Nelson, J.F. Gibbons, and W.S. Johnson, Radiation-enhanced diffusion of boron in silicon, Appl. Phys. Lett. 15 (1969), pp. 246–248.
  • P. Baruch, J. Monnier, B. Blanchard, and C. Castaing, Redistribution of boron in silicon through high-temperature proton irradiation, Inst. Phys. Conf. Ser. 23(7) (1975), pp. 453–460.
  • P. Baruch, J. Monnier, B. Blanchard, C. Castaing, P. Baruch, J. Monnier, B. Blanchard, and C. Castaing, Redistribution of boron in silicon after high-temperature proton irradiation, Appl. Phys. Lett. 26 (1975), pp. 77–80.
  • P. Baruch, Radiation defects and impurity diffusion in silicon, International Conference of Dubrovniks, 6--9 September 1976, Bristol, 1977, pp. 126--143.
  • W. Akutagawa, H.L. Dunlap, R. Hart, and O.J. Marsh, Impurity-peak formation during proton-enhanced diffusion of phosphorus and boron in silicon, J. Appl. Phys. 50 (1979), pp. 777–782.
  • Ch. Lucas, J.P. Gailliard, S. Loualiche, P. Baruch, J.C. Pfister, and R. Truche, Study of the diffusion of boron in high-temperature proton-irradiated silicon, in Defects and Radiation Effects in Semiconductors, J.H. Albany, ed., The Institute of Physics, London, 1979, pp. 551–558.
  • S. Loualiche, C. Lucas, P. Baruch, J.P. Gailliard, and J.C. Pfister, Theoretical model for radiation enhanced diffusion and redistribunion of impurities, Phys. Stat. Sol. (a) 69 (1982), pp. 663–676.
  • V.V. Kozlovski, V.A. Kozlov, V.N. Lomasov, Modification of semiconductors with proton beams, Rev. Semicond. 34 (2000), pp. 123–140.
  • V.C. Venezia, L. Pelaz, H.-J.L. Gossmann, A. Agarwal, and T.E. Haynes, Radiation-enhanced diffusion of Sb and B in silicon during implantation below 400°C, Phys. Rev. B 69 (2004), Article ID 125215.
  • K. Holldack and H. Kerkov, Point defect migration and impurity diffusion in Si due to ion irradiation, Proceedings of 2nd Autumn Meeting “Gettering and Defect Engineering in Semiconductor Technology (GADEST-87)", Garzau, Germany, 11–17 October 1987, pp. 185–189.
  • G.A. Kachurin, I.E. Tyshchenko, E. Wieser, and Ch. Weise, Redistribution of boron in silicon by high-temperature irradiation with heavy ions, Phys. Stat. Sol. (a) 100 (1988), pp. 141–148.
  • O.I. Velichko, A set of equations of radiation-enhanced diffusion of ion-implanted impurities, Proceedings of VII International Conference “Vzaimodeistvie Atomnyh Chastits s Tverdym Telom (Interaction of Atomic Particles with Solid)", Part 2, Minsk, Belarus, 1984, pp. 180–181 (in Russian).
  • V.A. Labunov and O.I. Velichko, Generalized diffusion equation for impurity atoms in semiconductor crystals, J. Eng. Phys. 57(5) (1990), pp. 1351–1355.
  • O.I. Velichko and A.K. Fedotov, A system of equations of coupled diffusion of dopant atoms and point defects in semiconductor crystals, Nonlinear Phenom. Complex Syst. 6 (2003), pp. 607–618.
  • D.A. Antoniadis, A.G. Gonzales, and R.W. Dutton, Boron in near-intrinsic (100) and (111) silicon under inert and oxidizing ambient - diffusion and segregation, J. Electrochem. Soc. 125 (1978), pp. 813–819.
  • P. Faney, R.W. Dutton, and S.M. Hu, Supersaturation of self-interstitials and undersaturation of vacancies during phosphorus diffusion in silicon, Appl. Phys. Lett. 44 (1984), pp. 777–779.
  • S.M. Hu and S. Shmidt, Interactions in sequental diffusion processes in semiconductors, J. Appl. Phys. 39 (1968), pp. 4272–4283.
  • C.L. Jones and A.F.W. Willoughby, Studies of the push-out effect in silicon: II. The effect of phosphorus emitter diffusion of gallium-base profiles determined by radiotracer techniques, J. Electrochem. Soc. 123 (1976), pp. 1531–1538.
  • Ya.E. Geguzin, Ascending diffusion and the diffusion aftereffect, Sov. Phys. Usp. 29 (1986), pp. 467–473.
  • S.R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, Dover Publications Inc, New York, 1984.
  • J.R. Manning, Diffusion Kinetics for Atoms in Crystals, Van Nostrand, Princeton, NJ, 1968.
  • L.P. Filippov, Transport Phenomena, Moscow University Press, Moscow, 1986 (in Russian).
  • H.D. Robinson, M.D. Deal, G. Amaratunga, P.B. Griffin, D.A. Stevenson, and J.D. Plummer, Modeling uphill diffusion of Mg implants in GaAs using SUPREM-IV, J. Appl. Phys. 71 (1992), pp. 2615–2623.
  • O.I. Velichko, Macroscopic description of the diffusion of interstitial impurity atoms considering the influence of elastic stress on the drift of interstitial species, Philos. Mag. 88 (2008), pp. 1477–1491.
  • V.A. Uskov and V.V. Vas’kin, Effect of nonuniform vacancy distribution on diffusion of impurities in semiconductors, Inorg. Mater. 8 (1972), pp. 1617–1618.
  • Ya. Morikawa, K. Yamomoto, and K. Nagami, Uphill diffusion mechanism in proton-iradiated silicon, Appl. Phys. Lett. 36 (1980), pp. 997–999.
  • O.I. Velichko, Modeling of the radiation-enhanced diffusion in silicon under conditions of proton bombardment, Proceedings of VI International Conference “Vzaimodeistvie Atomnyh Chastits s Tverdym Telom (Interaction of Atomic Particles with Solid)", Part 2, Minsk, Belarus, 1981, pp. 44–47 (in Russian).
  • A.F. Burenkov, F.F. Komarov, M.A. Kumakhov, and M.M. Temkin, Tables of Ion Implantation Spatial Distribution, Gordon and Breach, New York, 1986.
  • P. Pichler, Intrinsic point defects, impurities, and their diffusion in silicon, Computational Microelectronics, Springer, Wien, New York, 2004.
  • A.A. Samarskii, The theory of difference schemes, In Series: Pure and Applied Mathematics, Vol. 240, Marcel Dekker Incorporated, United States, 2001.
  • Y.M. Haddara, B.T. Folmer, M.E. Law, and T. Buyuklimanli, Accurate measurements of the intrinsic diffusivities of boron and phosphorus in silicon, Appl. Phys. Lett. 77 (2000), pp. 1976–1978.
  • C.A. English, S.M. Murphy, and J.M. Perks, Radiation-induced segregation in metals, J. Chem. Soc. Faraday Trans. 86 (1990), pp. 1263–1271.
  • R.G. Faulkner, S. Song, and P.E.J. Flewitt, Irradiation-induced silicon segregation in ferritic steels, J. Nuc. Mat. 212–215 (1994), pp. 608–611.
  • L.I. Ivanov and Yu.M. Platov, Radiation Physics of Metals and its Applications, Cambridge International Science Publishing, 2004.
  • G.S. Was, Fundamentals of Radiation Materials Science, Springer-Verlag, Berlin Heidelberg, New York, 2007. doi:10.1007/978-3-540-49472-0.
  • H. Takahashi and N. Hashimoto, Radiation-induced segregation and grain boundary migration in Fe--Cr--Ni model alloy under irradiation, Mater. Trans. JIM 34 (1993), pp. 1027–1030.
  • N. Shigenaka, S. Ono, Y. Isobe, T. Hashimoto, H. Fujimori, and S. Uchida, Radiation induced segregation at grain boundary in an austenitic stainless steel under ion irradiation, J. Nucl. Sci. Technol. 33 (1996), pp. 474–478.
  • N. Shigenaka, S. Ono, Y. Isobe, T. Hashimoto, H. Fujimori, and S. Uchida, Effect of zirconium addition to austenitic stainless steels on suppression of radiation induced chromium segregation at grain boundaries under ion irradiation, J. Nucl. Sci. Technol. 33 (1996), pp. 577–581. doi:10.1080/18811248.1996.9731958.
  • K. Fukuya and K. Fujii, A multicomponent model of radiation-induced segregation for commercial stainless steels, J. Nucl. Sci. Technol. 46 (2009), pp. 744–752. doi:10.1080/18811248.2007.9711581.
  • K.G. Field, L.M. Barnard, C.M. Parishv, J.T. Busby, D. Morgan, and H. Wipf, Dependence on grain boundary structure of radiation induced segregation in a 9 wt.% Cr model ferritic/martensitic steel, J. Nucl. Mat. 435 (2013), pp. 172–180.
  • V. Balakrishnan, General linear response analysis of anelasticity, Pramäna 11 (1978), pp. 379–388.
  • V. Balakrishnan, Theory of the Gorsky effect for low interstitial concentrations, Pramäna 11 (1978), pp. 389–409.
  • M. Hein, A. Bals, A.F. Privalov, and H. Wipf, Gorsky effect study of H and D diffusion in V and Ti at high H(D) concentrations, J. Alloys Compd. 356–357 (2003), pp. 318–321.
  • A. Hu and A. Hassanein, Modeling hydrogen isotope behavior in fusion plasma-facing components, J. Nucl. Mater. 446 (2014), pp. 56–62.
  • O.I. Velichko and A.K. Fedotov, A model of coupled diffusion of impurity atoms and point defects in the vicinity of semiconductor interfaces and grain boundaries, Solid State Phenom. 57–58 (1997), pp. 513–518.
  • A.K. Fedotov, O.I. Velichko, and V.A. Dobrushkin, Set of equations for stress-mediated evolution of the nonequilibrium dopant-defect system in semiconductor crystals, J. Alloys Compd. 382(1–2) (2004), pp. 283–287.
  • G. Abrasonis, W. M\"{o}ller, and X.X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen, Phys. Rev. Lett. 96 (2006), Article ID 065901.
  • J. Arunkumar, C. David, K.G.M. Nair, B.K. Panigrahi, and C.S. Sundar, Application of resonant nuclear reactions for studying the diffusion of nitrogen and silicon in Ti-modified stainless steel, Adv. Mater. Sci. Eng. (2012), Article ID 640217. doi:10.1155/2012/640217.
  • A.F. Burenkov, F.F. Komarov, M.A. Kumakhov, and M.M. Temkin, Prostranstvennie raspredeleniya energii, vydelennoi v kaskade atomnyh stolknovenij v tverdyh telah (Space Distributions of Energy Deposited in Atomic Collisions in Solids), Energoatomizdat, Moscow, 1985 (in Russian).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.