700
Views
41
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Influence of grain boundary state on electrical resistivity of ultrafine grained aluminium

, , , , &
Pages 2429-2444 | Received 18 Feb 2016, Accepted 15 Jun 2016, Published online: 12 Jul 2016

References

  • R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000), pp. 103–189.10.1016/S0079-6425(99)00007-9
  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006), pp. 881–981.10.1016/j.pmatsci.2006.02.003
  • M.J. Zehetbauer and Yu.T. Zhu (eds.), Bulk Nanostructured Materials, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, 2009.10.1002/9783527626892
  • A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008), pp. 893–979.10.1016/j.pmatsci.2008.03.002
  • R.Z. Valiev, M. Yu. Murashkin, and I. Sabirov, A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity, Scr. Mater. 76 (2014), pp. 13–16.10.1016/j.scriptamat.2013.12.002
  • R.K. Islamgaliev, K.M. Nesterov, J. Bourgon, Y. Champion, and R.Z. Valiev, Nanostructured Cu-Cr alloy with high strength and electrical conductivity, J. Appl. Phys. 115 (2014), pp. 194301-1–194301-4.10.1063/1.4874655
  • J.M. Cubero-Sesin, H. In, M. Arita, H. Iwaoka, and Z. Horita, High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires, J. Mat. Sci. 49 (2014), pp. 6550–6557.10.1007/s10853-014-8240-1
  • J.M. Cubero-Sesin, M. Arita, and Z. Horita, High strength and electrical conductivity of Al–Fe alloys produced by synergistic combination of high-pressure torsion and aging, Adv. Eng. Mater. 17 (2015), pp. 1792–1803.10.1002/adem.201500103
  • J. Zhang, N. Gao, and M.J. Starink, Al–Mg–Cu based alloys and pure Al processed by high pressure torsion: The influence of alloying additions on strengthening, Mat. Sci. Eng. A 527 (2010), pp. 3472–3479.10.1016/j.msea.2010.02.016
  • J.P. Hou, Q. Wang, H.J. Yang, X.M. Wu, C.H. Li, X.W. Li, and Z.F. Zhang, Microstructure evolution and strengthening mechanisms of cold-drawn commercially pure aluminum wire, Mat. Sci. Eng. A 639 (2015), pp. 103–106.10.1016/j.msea.2015.04.102
  • A.M. Mavlyutov, I.A. Kasatkin, M.Yu. Murashkin, R.Z. Valiev, and T.S. Orlova, Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation, Phys. Solid State 57 (2015), pp. 2051–2058.10.1134/S1063783415100194
  • P.L. Rositter, The Electrical Resistivity of Metals and Alloys, Cambridge University Press, Cambridge, 2003.
  • G.K. Williamson and R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philos. Mag. 1 (1956), pp. 34–46.10.1080/14786435608238074
  • S.S. Gorelik, L.N. Rastorguev, and Yu.A. Skakov, X-ray and electron-optical analysis, Metallurgiya, (1970), pp. 1–366. Russian.
  • R.Z. Valiev, A.P. Zhilyaev, and T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, John Wiley & Sons, Inc., Hoboken, NJ, 2014.
  • S.V. Divinski, G. Reglitz, H. Rosner, Yu. Estrin, and G. Wilde, Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing, Acta Mater. 59 (2011), pp. 1974–1985.10.1016/j.actamat.2010.11.063
  • M.A. Abdulstaar, E.A. El-Danaf, N.S. Waluyo, and L. Wagner, Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties, Mat. Sci. Eng. A 565 (2013), pp. 351–358.10.1016/j.msea.2012.12.046
  • Y. Miyajima, S.-Y. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima, and N. Tsuji, Change in electrical resistivity of commercial purity aluminium severely plastic deformed, Philos. Mag. 90 (2010), pp. 4475–4488.10.1080/14786435.2010.510453
  • S. Komatsu, M. Ikeda, T. Muramatsu, and M. Matsuo, Estimation of solute Fe concentration in commercial pure aluminium, Key Eng. Mater. 44–45 (1990), pp. 31–56.10.4028/www.scientific.net/KEM.44-45
  • A.S. Karolik and A.A. Luhvich, Calculation of electrical resistivity produced by dislocations and grain boundaries in metals, J. Phys.: Cond. Matter. 6 (1994), pp. 873–886.
  • P.V. Andrews, M.B. West, and C.R. Robeson, The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium, Philos. Mag. 19 (1969), pp. 887–898.10.1080/14786436908225855
  • A.A. Nazarov, A.E. Romanov, and R.Z. Valiev, On the structure, stress fields and energy of nonequilibrium grain boundaries, Acta Metall. Mater. 41 (1993), pp. 1033–1040.10.1016/0956-7151(93)90152-I
  • A.E. Romanov, A.L. Kolesnikova, T.S. Orlova, I. Hussainova, V.E. Bougrov, and R.Z. Valiev, Non-equilibrium grain boundaries with excess energy in graphene, Carbon 81 (2015), pp. 223–231.10.1016/j.carbon.2014.09.053
  • X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mat. Sci. Eng. A 540 (2012), pp. 1–12.10.1016/j.msea.2012.01.080
  • J.M. Cubero-Sesin and Z. Horita, Mechanical properties and microstructures of Al–Fe alloys processed by high-pressure torsion, Metall. Mater. Trans. A 43A (2012), pp. 5182–5192.10.1007/s11661-012-1341-z
  • G. Sha, K. Tugcu, X.Z. Liao, P.W. Trimby, M.Y. Murashkin, R.Z. Valiev, and S.P. Ringer, Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion, Acta Mater. 63 (2014), pp. 169–179.10.1016/j.actamat.2013.10.022
  • X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin, Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy, Acta Mater. 72 (2014), pp. 125–136.10.1016/j.actamat.2014.03.033
  • R.K. Islamgaliev, N.A. Akhmadeev, R.R. Mulyukov, and R.Z. Valiev, Grain boundary influence on the electrical resistance of submicron grained copper, Phys. Status Solidi A 118 (1990), pp. K27–K29.10.1002/(ISSN)1521-396X
  • R.K. Islamgaliev, R.Ya. Murtazin, L.A. Syutina, and R.Z. Valiev, The role of grain boundaries in the electrical resistance of submicron grained nickel, Phys. Status Solidi A 129 (1992), pp. 231–236.10.1002/(ISSN)1521-396X
  • R.K. Islamgaliev, K. Pekala, M. Pekala, and R.Z. Valiev, The determination of grain boundary width of ultrafine grained copper and nickel from the electrical resistivity measurements, Phys. Status Solidi A 162 (1997), pp. 559–566.10.1002/(ISSN)1521-396X
  • A.F. Mayadas and M. Shatzkes, Electrical-resistivity model for polycrystalline films: The case of arbitrary reflection at external surfaces, Phys. Rev. B 1 (1970), pp. 1382–1389.10.1103/PhysRevB.1.1382

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.