229
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Inverse Hall–Petch like behaviour in a mechanically milled nanocrystalline Al5Fe2 intermetallic phase

, &
Pages 2445-2456 | Received 03 Mar 2016, Accepted 10 Jun 2016, Published online: 13 Jul 2016

References

  • C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001), pp. 1–184.10.1016/S0079-6425(99)00010-9
  • B.S. Murty and S. Ranganathan, Novel materials synthesis by mechanical alloying/milling, Int. Mater. Rev. 43 (1998), pp. 101–141.10.1179/imr.1998.43.3.101
  • K. Maung, J.C. Earthman, and F.A. Mohamed, Inverse Hall–Petch behavior in diamantane stabilized bulk nanocrystalline aluminum, Acta Mater. 60 (2012), pp. 5850–5857.10.1016/j.actamat.2012.07.026
  • Y. Tang, E.M. Bringa, and M.A. Meyers, Inverse Hall–Petch relationship in nanocrystalline tantalum, Mater. Sci. Eng. A. 580 (2013), pp. 414–426.10.1016/j.msea.2013.05.024
  • N.K. Mukhopadhyay, F. Ali, S. Scudino, M. Samadi Khoshkhoo, M. Stoica, V.C. Srivastava, V. Uhlenwinkel, G. Vaughan, C. Suryanarayana, and J. Eckert, Grain size softening effect in Al62.5Cu25Fe12.5 nanoquasicrystals, Appl. Phys. Lett. 103 (2013), pp. 201914–201915.10.1063/1.4831737
  • A. Kelly, Strong Solids, Clarendon Press, Oxford, 1966, pp. 1–94.
  • G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, 1988, pp. 188–191.
  • S.C. Tjong and Haydn Chen, Nanocrystalline materials and coatings, Mater. Sci. Eng. R: Rep. 45 (2004), pp. 1–88.10.1016/j.mser.2004.07.001
  • P.G. Sanders, J.A. Eastman, and J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater. 45 (1997), pp. 4019–4025.10.1016/S1359-6454(97)00092-X
  • N.K. Mukhopadhyay and P. Paufler, Micro- and nano-indentation techniques for mechanical characterization of materials, Int. Mater. Rev. 51 (2006), pp. 209–245.10.1179/174328006X102475
  • A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, On the validity of the Hall–Petch relationship in nanocrystalline materials, Scripta Metall. 23 (1989), pp. 1679–1683.10.1016/0036-9748(89)90342-6
  • C.C. Koch, J. Narayan, D. Farkas, H. Kung, M. Mayo, H. Van Swygenhoven, and J. Weertman (eds.), Structure and Mechical Properties of nanophase Materials-theory and Computer Simulation versus Experiment, Symposium Proceedings, Vol. 634, MRS, Warrendale, PA, USA, 2001, pp. B.5.1.1–B5.1.11.
  • K.A. Padmanabhan, G.P. Dinda, H. Hahn, and H. Gleiter, Inverse Hall–Petch effect and grain boundary sliding controlled flow in nanocrystalline materials, Mater. Sci. Eng. A. 452–468 (2007), pp. 462–468.
  • G. Palumbo, U. Erb, and K.T. Aust, Triple line disclination effects on the mechanical behaviour of materials, Scripta Metall. Mater. 24 (1990), pp. 2347–2350.10.1016/0956-716X(90)90091-T
  • N. Wang, Z. Wang, K.T. Aust, and U. Erb, Effect of grain size on mechanical properties of nanocrystalline materials, Acta Metall. Mater. 43 (1995), pp. 519–528.10.1016/0956-7151(94)00253-E
  • D. Wolf and V. Yamakov, S.R. Phillpot, A. Mukherjee and H. Gleiter, Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments?, Acta Mater. 53 (2005), pp. 1–40.10.1016/j.actamat.2004.08.045
  • K. Lu, W.D. Wei, and J.T. Wang, Microhardness and fracture properties of nanocrystalline Ni–P alloy, Scripta Metall. Mater. 24 (1990), pp. 2319–2323.10.1016/0956-716X(90)90086-V
  • G.E. Fougere, J.R. Weertman, and R.W. Siegel, Grain-size dependent hardening and softening of nanocrystalline Cu and Pd, Scripta Metall. Mater. 26 (1992), pp. 1879–1883.10.1016/0956-716X(92)90052-G
  • C.A. Schuh and T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater. 51 (2003), pp. 87–99.10.1016/S1359-6454(02)00303-8
  • H. Conrad and J. Narayan, On the grain size softening in nanocrystalline materials, Scripta Mater. 42 (2000), pp. 1025–1030.10.1016/S1359-6462(00)00320-1
  • H. Conrad and J. Narayan, Mechanism for grain size softening in nanocrystalline Zn, Appl. Phys. Lett. 81 (2002), pp. 2241–2243.10.1063/1.1507353
  • H. Conrad and J. Narayan, Mechanisms for grain size hardening and softening in Zn, Acta Mater. 50 (2002), pp. 5067–5078.10.1016/S1359-6454(02)00357-9
  • Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt and S.X. Mao, Grain boundary-mediated plasticity in nanocrystalline nickel, Science. 305 (2004), pp. 654–657.10.1126/science.1098741
  • C. Brandl, P.M. Derlet, and H. Van Swygenhoven, Dislocation mediated plasticity in nanocrystalline Al: The strongest size, Modell. Simul. Mater. Sci. Eng. 19 (2011), p. 074005.10.1088/0965-0393/19/7/074005
  • V.Y. Gertsman, M. Hoffmann, H. Gleiter, and R. Birringer, The study of grain size dependence of yield stress of copper for a wide grain size range, Acta Metall. Mater. 42 (1994), pp. 3539–3544.10.1016/0956-7151(94)90486-3
  • J. Schiotz and K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science. 301 (2003), pp. 1357–1359.10.1126/science.1086636
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nat. Mater. 3 (2004), pp. 43–47.10.1038/nmat1035
  • K.A. Padmanabhan, Grain boundary sliding controlled flow and its relevance to superplasticity in metals, alloys, ceramics and intermetallics and strain-rate dependent flow in nanostructured materials, J. Mater. Sci. 44 (2009), pp. 2226–2238.10.1007/s10853-008-3076-1
  • H. Hahn, P. Mondal, and K.A. Padmanabhan, Plastic deformation of nanocrystalline materials, Nanostruct. Mater. 9 (1997), pp. 603–606.10.1016/S0965-9773(97)00135-9
  • H. Hahn and K.A. Padmanabhan, A model for the deformation of nanocrystalline materials, Philos. Mag. Part B. 76 (1997), pp. 559–571.10.1080/01418639708241122
  • K.A. Padmanabhan and J. Schlipf, Model for grain boundary sliding and its relevance to optimal structural superplasticity Part 1 – Theory, Mater. Sci. Technol. 12 (1996), pp. 391–399.10.1179/026708396790165920
  • M. Raviathul Basariya, R.K. Roy, A.K. Pramanick, V.C. Srivastava, and N.K. Mukhopadhyay, Structural transition and softening in Al–Fe intermetallic compounds induced by high energy ball milling, Mater. Sci. Eng. A. 638 (2015), pp. 282–288.
  • T.H. de Keijser, J.I. Langford, E.I. Mittemeijer, and A.B.P. Vogels, Use of the voigt function in a single-line method for the analysis of X-ray diffraction line broadening, J. Appl. Crystallogr. 15 (1982), pp. 308–314.10.1107/S0021889882012035
  • T. Robert Shives and C. Leonard Smith, in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, P.J. Blau and B.R. Lawn, eds., American Society for Testing and Materials, Pliladelphia, 1986, pp. 1–243.
  • D.K. Mukhopadhyay, C. Suryanarayana, and F.H. Froes, Structural evolution in mechanically alloyed Al–Fe powders, Metall. Mater. Trans. A. 26 (1995), pp. 1939–1946.10.1007/BF02670665
  • B. Huang, K.N. Ishihara, and P.H. Shingu, Metastable phases of Al–Fe system by mechanical alloying, Mater. Sci. Eng. A. 231 (1997), pp. 72–79.10.1016/S0921-5093(97)00041-5
  • H. Van Swygenhoven and J.R. Weertman, Preface to the viewpoint set on: Mechanical properties of fully dense nanocrystalline metals, Scripta Mater. 49 (2003), pp. 625–627.10.1016/S1359-6462(03)00399-3
  • A.G. Frøseth, P.M. Derlet, and H. Van Swygenhoven, Dislocations emitted from nanocrystalline grain boundaries: Nucleation and splitting distance, Acta Mater. 52 (2004), pp. 5863–5870.10.1016/j.actamat.2004.09.001
  • X.L. Wu and E. Ma, Dislocations in nanocrystalline grains, Appl. Phys. Lett. 88 (2006), pp. 231911–231913.10.1063/1.2210295
  • F.A. Mohamed and Yuwei Xun, Correlations between the minimum grain size produced by milling and material parameters, Mater. Sci. Eng. A. 354 (2003), pp. 133–139.10.1016/S0921-5093(02)00936-X
  • T.G. Nieh and J. Wadsworth, Hall–Petch relation in nanocrystalline solids, Scripta Metall. Mater. 25 (1991), pp. 955–958.10.1016/0956-716X(91)90256-Z
  • S. Hirose, T. Itoh, M. Makita, S. Fujii, S. Arai, K. Sasaki, and H. Saka, Defect structure of deformed Fe2Al5 intermetallic compound, Intermetallics. 11 (2003), pp. 633–642.10.1016/S0966-9795(03)00050-5
  • J.R. Weertman and R.S. Averback, Mechanical properties, in Nanocrystalline Materials: Synthesis, Properties and Applications, A.S. Edelstein and R.C. Cammarata, eds., Institute of Metals Publishing, Bristol, 1996, pp. 1–323.
  • B. Jiang and G.J. Weng, A composite model for the grain-size dependence of yield stress of nanograined materials, Metall. Mater. Trans. A. 34 (2003), pp. 765–772.10.1007/s11661-003-1004-1
  • P. Barai and G.J. Weng, Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding, Int. J. Plast. 25 (2009), pp. 2410–2434.10.1016/j.ijplas.2009.04.001
  • M. Raviathul Basariya and N.K. Mukhopadhyay, S. Sripathi, and K.A. Padmanabhan, Grain size softening effect in intermetallics, J. Alloys and Compd. 673 (2016), pp. 199–204.10.1016/j.jallcom.2016.02.258
  • K.A. Padmanabhan, S. Sripathi, H. Hahn, and H. Gleiter, Inverse Hall–Petch effect in quasi-and nanocrystalline materials, Mater. Lett. 133 (2014), pp. 151–154.10.1016/j.matlet.2014.06.153

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.