190
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Radiation-induced cavities in aluminium alloy imaged by in line electron holography

, , , , , & show all
Pages 2504-2517 | Received 20 Oct 2015, Accepted 18 Jun 2016, Published online: 20 Jul 2016

References

  • G. Was, Fundamentals of Radiation Materials Science Metals and Alloys, Springer, Berlin Heidelberg, 2007.
  • F.A. Garner, Radiation Damage in Austenitic Steels, Comprehensive Nuclear Materials, R.J.M. Konings, ed., Vol. 4, Elsevier Science, Amsterdam, 2012, pp. 33–95.
  • K. Farrel, P.J. Maziasz, E.H. Lee, and L.K. Mansur, Modification of radiation damage microstructure by helium, Rad. Eff. 78 (1983), pp. 277–295.10.1080/00337578308207378
  • A.S. Fraser, I.R. Birss, and C. Cawthorne, High temperature embrittlement of stainless steels irradiated in fast fluxes, Nature 211 (1966), pp. 291–292.10.1038/211291a0
  • C. Cawthorne and E.J. Fulton, Voids in irradiated stainless steels, Nature 216 (1967), pp. 575–576.
  • J.L. Brimhall and B. Mastel, Voids in neutron irradiated face centered cubic metals, J. Nucl. Mater. 29 (1969), pp. 123–125.10.1016/0022-3115(69)90132-9
  • D.J. Mazey, S. Francis, and J.A. Hudson, Observation of a partially-ordered void lattice in aluminium irradiated with 400 keV Al+ ions, J. Nucl. Mater. 47 (1973), pp. 137–142.10.1016/0022-3115(73)90095-0
  • N.H. Packan, Fluence and flux dependence of void formation in pure aluminium, J. Nucl. Mater. 40 (1971), pp. 1–16.10.1016/0022-3115(71)90111-5
  • K. Farrell, Comprehensive Nuclear Materials, R.J.M. Konings, ed., Vol. 5, Elsevier Science, Amsterdam, 2012, pp.143–175.
  • L.L. Hsiung, M.J. Fluss, S.J. Tumey, B.W. Choi, Y. Serruys, F. Willaime, and A. Kimura, Formation mechanism and the role of nanoparticles in Fe–Cr ODS steels developed for radiation tolerance, Phys. Rev. B 82 (2010), p. 184103.10.1103/PhysRevB.82.184103
  • M.L. Jenkins, Characterisation of radiation-damage microstructures by TEM, J. Nucl. Mater. 216 (1994), pp. 124–156.10.1016/0022-3115(94)90010-8
  • E. Snoeck, J. Majimel, M.O. Ruault, and M.J. Hÿtch, Characterization of helium bubble size and faceting by electron holography, J. Appl. Phys. 100 (2006), p. 023519.10.1063/1.2216791
  • J.M. Cowley, Twenty forms of electron holography, Ultramicroscopy 41 (1992), pp. 335–348.10.1016/0304-3991(92)90213-4
  • D. Van Dyck, H. Lichte, and K.D. van der Mast, Sub-Ångstrom structure characterisation: The Brite-Euram route towards one Ångstrom, Ultramicroscopy 64 (1996), pp. 1–15.10.1016/0304-3991(96)00057-5
  • P.A. Midgley and R.E. Dunin-Borkowski, Electron tomography and holography in materials science, Nat. Mater. 8 (2009), pp. 271–280.10.1038/nmat2406
  • L.F. Allard, E. Voelkl, D.S. Kalakkad, and A.K. Datye, Electron holography reveals the internal structure of palladium nano-particles, J. Mater. Sci. 29 (1994), pp. 5612–5614.10.1007/BF00349955
  • P. Donnadieu, M. Verdier, G. Berthome, and P. Mur, Imaging a dense nanodot assembly by phase retrieval from TEM images, Ultramicroscopy 100 (2004), pp. 79–90.10.1016/j.ultramic.2004.01.007
  • L. Beck, Y. Serruys, S. Miro, P. Trocellier, E. Bordas, F. Leprêtre, D. Brimbal, T. Loussouarn, H. Martin, S. Vaubaillon, S. Pellegrino, and D. Bachiller-Perea, Ion irradiation and radiation effect characterization at the JANNUS-Saclay triple beam facility, J. Mater. Res. 30 (2015), pp. 1183–1194.10.1557/jmr.2014.414
  • J.F. Ziegler and J.P. Biersack, SRIM-2003 Program, IBM Corp., IBM Corp, Yorktown, NY, 2003.
  • E. Stoller, M.B Toloczko, G.S. Was, A.G. Certain, S.D. Dwaraknath, F.A. Garner, On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. Sect. B 310 (2013), pp. 75–80.10.1016/j.nimb.2013.05.008
  • H.H. Neely and W. Bauer, Electron-irradiation damage-rate measurements in aluminum, Phys. Rev. 149 (1966), p. 535.10.1103/PhysRev.149.535
  • P. Schiske, Image reconstruction by means of focus series, J. Micros. 207 (2002), p. 154.10.1046/j.1365-2818.2002.01042.x
  • P. Donnadieu, S. Lazar, G.A. Botton, I. Pignot-Paintrand, M. Reynolds, and S. Perez, Seeing structures and measuring properties with transmission electron microscopy images: a simple combination to study size effects in nanoparticle systems, Appl. Phys. Lett. 94 (2009), p. 263116.10.1063/1.3168525
  • M.R. Teague, Deterministic phase retrieval: a Green’s function solution, J. Opt. Soc. Am. 73 (1983), pp. 1434–1441.10.1364/JOSA.73.001434
  • K.A. Nugent, T.E. Gureyev, D.F. Cookson, D. Paganin, and Z. Barnea, Quantitative phase imaging using hard X Rays, Phys. Rev. Lett. 77 (1961), p. 2961.
  • K. Ishizuka and B. Allman, Phase measurement of atomic resolution image using transport of intensity equation, J. Electron. Microsc. 54 (2005), pp. 191–197.10.1093/jmicro/dfi024
  • M. Mitome, K. Ishizuka, and Y. Bando, Quantitativeness of phase measurement by transport of intensity equation, J. Electron. Microsc. 59 (2010), pp. 33–41.10.1093/jmicro/dfp046
  • P. Donnadieu, T. Neisius, G. Amiard, A. Gouyé, A. Ronda, and I. Berbezier, On morphology and strain field of Ge/Si (001) islands according to TEM phase imaging method, J. Nanosci. Nanotechnol. 11–10 (2011), pp. 9208–9214.10.1166/jnn.2011.4291
  • L. Reimer, Transmission Electron Microscopy, 2nd ed., Springer Verlag, Berlin, 1989.
  • J.A. Ibers, Atomic scattering amplitudes for electrons, Acta Cryst. 11 (1958), pp. 178–183.10.1107/S0365110X58000475
  • A. Sanchez and M.A. Ochando, Calculation of the mean inner potential, J. Phys. C: Solid State Phys. 18 (1985), pp. 33–41.10.1088/0022-3719/18/1/011
  • D. Grasse, B.V. Guerard, and J. Peisl, Interstitial clustering in cascades in fast-neutron-irradiated aluminium investigated by diffuse X-ray scattering, Rad. Eff. 66 (1982), pp. 21–33.10.1080/00337578208211471
  • R. Popescu, E. Müller, D. Gerthsen, M. Wanner, A. Böttcher, D. Löffler, P. Weis, M. Schowalter, and A. Rosenauer, Increase of the mean inner Coulomb potential in Au clusters induced by surface tension and its implication for electron scattering, Phys. Rev. B 76 (2007), p. 235411.10.1103/PhysRevB.76.235411
  • R.E. Dunin-Borkowski, The development of Fresnel contrast analysis, and the interpretation of mean inner potential profiles at interfaces, Ultramicroscopy 83 (2000), pp. 193–216.10.1016/S0304-3991(00)00015-2
  • C. Flament, J. Ribis, J. Garnier, T. Vandenberghe, J. Henry, and A. Deschamps, Electron irradiation-enhanced core/shell organization of Al(Cr, Fe, Mn)Si dispersoids in Al–Mg–Si alloys, Phil. Mag. 95 (2015), pp. 906–917.10.1080/14786435.2015.1009959
  • S. Chung, D.J. Smith, and M.R. McCartney, Electrostatic potential mapping across AlGaAs/AlAs/GaAs heterostructure, Microsc. Microanal. 14 (2008), pp. 16–17.10.1017/S1431927608084882
  • D.R. Rasmussen and C.B. Carter, On the Fresnel-fringe technique for the analysis of interfacial films, Ultramicroscopy 32 (1990), pp. 337–348.10.1016/0304-3991(90)90080-6
  • F.M. Ross, and W.M. Stobbs, A study of the initial stages of the oxidation of silicon using the Fresnel method, Phil. Mag. A 63 (1991), pp. 1–36.10.1080/01418619108204591

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.