294
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Orbital-free density functional theory study of the energetics of vacancy clustering and prismatic dislocation loop nucleation in aluminium

&
Pages 2468-2487 | Received 23 Jan 2016, Accepted 14 Jun 2016, Published online: 11 Jul 2016

References

  • A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh, Discrete and continuous deformation during nanoindentation of thin films, Acta Mater. 48 (2000), pp. 2277–2295.
  • V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington, and M.A. Meyers, Void growth by dislocation emission, Acta Mater. 52 (2004), pp. 1397–1408.
  • B.D. Wirth, How does radiation damage materials? Science 318 (2007), pp. 923–924.
  • D. Kuhlmann-Wilsdorf and H.G.F. Wilsdorf, On the behavior of thermal vacancies in pure aluminium, J. App. Phys. 31 (1960), pp. 516–525.
  • R.M.J. Cotterill and R.L. Segalla, The effect of quenching history, quenching temperature and trace impurities on vacancy clusters in aluminium and gold, Phil. Mag. 8 (1963), pp. 1105–1125.
  • R.S. Barnes and D.J. Mazey, The nature of radiation-induced point defect clusters, Phil. Mag. 5 (1960), pp. 1247–1253.
  • B.L. Eyre and A.F. Bartlett, An electron microscope study of neutron irradiation damage in α-iron, Phil. Mag. 12 (1965), pp. 261–272.
  • B.C. Masters, Dislocation loops in irradiated iron, Phil. Mag. 11 (1965), pp. 881–893.
  • H. Trinkaus, B.N. Singh, and A.J.E. Foreman, Segregation of cascade induced interstitial loops at dislocations: possible effect on initiation of plastic deformation, J. Nucl. Mater. 251 (1997), pp. 172–187.
  • B.N. Singh, A.J.E. Foreman, and H. Trinkaus, Radiation hardening revisited: role of intracascade clustering, J. Nucl. Mater. 249 (1997), pp. 103–115.
  • P.M. Rice and S.J. Zinkle, Temperature dependence of the radiation damage microstructure in V-4Cr-4Ti neutron irradiated to low dose, J. Nucl. Mater. 258–263 (1998), pp. 1414–1419.
  • S.J. Zinkle and N.M. Ghoniem, Prospects for accelerated development of high performance structural materials, J. Nucl. Mater. 417 (2011), pp. 2–8.
  • D.J. Bacon, A.F. Calder, J.M. Harder, and S.J. Wooding, Computer simulations of low energy displacement in pure bcc and hcp metals, J. Nucl. Mater. 205 (1993), pp. 52–58.
  • M.T. Robinson, Basic physics of radiation damage production, J. Nucl. Mater. 216 (1994), pp. 1–28.
  • D.J. Bacon and T.D. de la Rubia, Molecular dynamics computer simulations of displacement cascades in metals, J. Nucl. Mater. 216 (1994), pp. 275–290.
  • G.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry, Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential, Phil. Mag. A 75 (1997), pp. 713–732.
  • N. Soneda and T.D. de la Rubia, Defect production, annealing kinetics and damage evolution in α-Fe: an atomic-scale computer simulation, Phil. Mag. A 78 (1998), pp. 995–1019.
  • K.O. Trachenko, M.T. Dove, and E.K.H. Salje, Atomistic modeling of radiation damage in zircon, J. Phys.: Condens. Matter 13 (2001), pp. 1947–1959.
  • B.D. Wirth, G.R. Odette, D. Maroudas, and G.E. Lucas, Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron, J. Nucl. Mater. 276 (2000), pp. 33–40.
  • S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz, Interatomic potential for vanadium suitable for radiation damage simulations, J. Appl. Phys. 93 (2003), pp. 3328–3335.
  • J. Marian, B.D. Wirth, and J.M. Perlado, Mechanism of formation and growth of {100} interstitial loops in ferritic materials, Phys. Rev. Lett. 88 (2002), p. 255507.
  • J. Marian, B.D. Wirth, A. Caro, B. Sadigh, G.R. Odette, J.M. Perlado, and T.D. de la Rubia, Dynamics of self-interstitial cluster migration in pure α-Fe and Fe-Cu alloys, Phys. Rev. B 65 (2002), p. 144102.
  • M.J. Caturla, N. Soneda, T.D. de la Rubia, and M. Fluss, Kinetic Monte Carlo simulations applied to irradiated materials: The effect of cascade damage in defect nucleation and growth, J. Nucl. Mater. 351 (2006), pp. 78–87.
  • K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, and H. Mori, Observation of the one-dimensional diffusion of nanometer-sized dislocation loops, Science 318 (2007), pp. 956–959.
  • Y. Matsukawa and S.J. Zinkle, One-dimensional fast migration of vacancy clusters in metals, Science 318 (2007), pp. 959–962.
  • B.D. Wirth, G.R. Odette, D. Maroudas, and G.E. Lucas, Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron, J. Nucl. Mater. 244 (1997), pp. 185–194.
  • K. Morishita, R. Sugano, and B.D. Wirth, MD and KMC modeling of the growth and shrinkage mechanisms of helium-vacancy clusters in Fe, J. Nucl. Mater. 323 (2003), pp. 243–250.
  • R. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 2003.
  • L. Wang and M.P. Teter, Kinetic energy functional of electron density, Phys. Rev. B 45 (1992), p. 13196.
  • E. Smargiassi and P.A. Madden, Orbital-free kinetic-energy functionals for first-principle molecular dynamics, Phys. Rev. B 49 (1994), p. 5220.
  • Y.A. Wang, N. Govind, and E.A. Carter, Orbital-free kinetic-energy density functionals with a density-dependent kernel, Phys. Rev. B 60 (1999), p. 16350.
  • V.V. Karasiev, T. Sjostrom, and S.B. Trickey, Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations, Phys. Rev. B 86 (2012), p. 115101.
  • V.V. Karasiev, D. Chakraborty, and S.B. Trickey, Progress on new approaches to old ideas: Orbital-free density functions, in Many-Electron Approaches in Physics, Chemistry, and Mathematics, L.Delle Site and V.Bach eds. Springer, Heidelberg, 2014, pp. 113–134.
  • L. Hung and E.A. Carter, Accurate simulations of metals at the mesoscale: explicit treatment of 1 million atoms with quantum mechanics, Chem. Phys. Lett. 475 (2009), pp. 163–170.
  • P. Suryanarayana and D. Phanish, Augmented Lagrangian formulation of orbital-free density functional theory, J. Comput. Phys. 275 (2014), pp. 524–538.
  • V. Gavini, K. Bhattacharya, and M. Ortiz, Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation, J. Mech. Phys. Solids 55 (2007), pp. 697–718.
  • Q. Peng, X. Zhang, L. Hung, E.A. Carter, and G. Lu, Quantum simulation of materials at micron scales and beyond, Phys. Rev. B 78 (2008), p. 054118.
  • X. Zhang, Y. Zhao, and G. Lu, Recent development in quantum mechanics/molecular mechanics modeling for materials, Int. J. Multiscale Com. 10 (2012), pp. 65–82.
  • V. Gavini, K. Bhattacharya, and M. Ortiz, Vacancy clustering and prismatic dislocation loop formation in aluminum, Phys. Rev. B 76 (2007), p. 180101(R).
  • G. Ho, M.T. Ong, K.J. Caspersen, and E.A. Carter, Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminum via orbital-free density functional theory, Phys. Chem. Chem. Phys. 9 (2007), pp. 4951–4966.
  • I. Shin, A. Ramasubramaniam, C. Huang, L. Hung, and E.A. Carter, Orbital-free density functional theory simulations of dislocations in aluminum, Phil. Mag. 89 (2009), pp. 3195–3213.
  • M. Iyer, B.G. Radhakrishnan, and V. Gavini, Electronic-structure study of an edge dislocation in aluminum and the role of macroscopic deformations on its energetics, J. Mech. Phys. Solids 76 (2015), pp. 260–275.
  • K.M. Carling and E.A. Carter, Orbital-free density functional theory calculations of the properties of Al, Mg and Al-Mg crystalline phases, Model. Simul. Mater. Sci. Eng. 11 (2003), pp. 339–348.
  • S. Das, M. Iyer, and V. Gavini, Real-space formulation of orbital-free density functional theory using finite-element discretization: The case for Al, Mg, and Al-Mg intermetallics, Phys. Rev. B 92 (2015), p. 014104.
  • B. Radhakrishnan and V. Gavini, Effect of cell size on the energetics of vacancies in aluminum studied via orbital-free density functional theory, Phys. Rev. B 82 (2010), p. 094117.
  • P. Motamarri, M. Iyer, J. Knap, and V. Gavini, Higher-order adaptive finite-element methods for orbital-free density functional theory, J. Comput. Phys. 231 (2012), pp. 6596–6621.
  • R.M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge, 2011.
  • J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981), p. 5048.
  • J.E. Pask and P.A. Sterne, Real-space formulation of the electrostatic potential and total energy of solids, Phys. Rev. B 71 (2005), p. 113101.
  • V. Gavini, J. Knap, K. Bhattacharya, and M. Ortiz, Non-periodic finite-element formulation of orbital-free density-functional theory, J. Mech. Phys. Solids 55 (2007), pp. 669–696.
  • P. Motamarri, M.R. Nowak, K. Leiter, J. Knap, and V. Gavini, Higher-order adaptive finite-element methods for Kohn-Sham density functional theory, J. Comput. Phys. 253 (2013), pp. 308–343.
  • N. Choly and E. Kaxiras, Kinetic energy functionals for non periodic systems, Solid State Commun. 121 (2002), pp. 281–286.
  • L. Hung, C. Huang, I. Shin, G. Ho, V.L. Ligneres, and E.A. Carter, Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations, Comput. Phys. Comm. 181 (2010), pp. 2208–2209.
  • E.B. Tadmor, M. Ortiz, and R. Phillips, Quasicontinuum analysis of defects in solids, Phil. Mag. A 73 (1996), pp. 1529–1563.
  • J. Knap and M. Ortiz, An analysis of the quasicontinuum method, J. Mech. Phys. Solids 49 (2001), pp. 1899–1923.
  • X. Blanc, C. Le Bris, and P.L. Lions, From molecular models to continuum mechanics, Arch. Rational Mech. Anal. 164 (2002), pp. 341–381.
  • V. Gavini, Role of macroscopic deformations in energetics of vacancies in aluminum, Phys. Rev. Lett. 101 (2008), p. 205503.
  • M. Iyer and V. Gavini, A field theoretic approach to the quasi-continuum method, J. Mech. Phys. Solids 59 (2011), pp. 1506–1535.
  • V. Gavini and L. Liu, A homogenization analysis of the field theoretical approach to the quasi-continuum method, J. Mech. Phys. Solids 59 (2011), pp. 1536–1551.
  • B. Zhou, Y.A. Wang, and E.A. Carter, Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment, Phys. Rev. B 69 (2004), p. 125109.
  • C. Huang and E.A. Carter, Transferable local pseudopotentials for magnesium, aluminum and silicon, Phys. Chem. Chem. Phys. 10 (2008), pp. 7109–7120.
  • M.J. Gillan, Calculation of the vacancy formation energy in aluminium, J. Phys.: Condens. Matter 1 (1989), pp. 689–711.
  • M. Finnis, Interatomic Forces in Condensed Matter, Oxford University Press, Oxford, 2003.
  • M. Iyer, T.M. Pollock, and V. Gavini, Energetics and nucleation of point defects in aluminum under extreme tensile hydrostatic stresses, Phys. Rev. B 89 (2014), p. 014108.
  • L. Goodwin, R.J. Needs, and V. Heine, A pseudopotential total energy study of impurity promoted intergranular embrittlement, J. Phys. Condens. Matter 2 (1990), pp. 351–365.
  • X.L. Wu, B. Li, and E. Ma, Vacancy clusters in ultrafine grained Al by severe plastic deformation, Appl. Phys. Lett. 91 (2007), p. 141908.
  • M. Kiritani, Story of stacking fault tetrahedra, Mater. Chem. Phys. 50 (1997), pp. 133–138.
  • M. Kiritani, Y. Satoy, Y. Kizuka, K. Arakawa, Y. Ogasawara, S. Arai, and Y. Shimomura, Anomalous production of vacancy clusters and the possibility of plastic deformation of crystalline metals without dislocations, Phil. Mag. 79 (1999), pp. 797–804.
  • H. Wang, D. Rodney, D. Xu, R. Yang, and P. Veyssiére, Pentavacancy as the key nucleus for vacancy clustering in aluminum, Phys. Rev. B 84 (2011), p. 220103.
  • P. Motamarri and V. Gavini, A subquadratic-scaling subspace projection method for large-scale Kohn-Sham DFT calculations using spectral finite-element discretization, Phys. Rev. B 90 (2014), p. 115127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.