329
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The structure of a propagating MgAl2O4/MgO interface: linked atomic- and μm-scale mechanisms of interface motion

, , , , , , & show all
Pages 2488-2503 | Received 27 Jan 2016, Accepted 15 Jun 2016, Published online: 14 Jul 2016

References

  • H.J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Gösele, Monocrystalline spinel nanotube fabrication based on the Kirkendall effect, Nat. Mater. 5 (2006), pp. 627–631.10.1038/nmat1673
  • H.J. Fan, U. Gösele, and M. Zacharias, Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review, Small 3 (2007), pp. 1660–1671. 10.1002/(ISSN)1613-6829
  • C. Li, J. Poplawsky, N. Paudel, T.J. Pennycook, S.J. Haigh, M.M. Al-Jassim, Y. Yan, and S.J. Pennycook, S–Te interdiffusion within grains and grain boundaries in CdTe solar cells, IEEE J. Photovolt. 4 (2014), pp. 1636–1643. 10.1109/JPHOTOV.2014.2351622
  • D. Hesse, Formation of ceramic thin films by solid-state interface reactions, J. Vac. Sci. Technol. A. 5 (1987), pp. 1696–1702.10.1116/1.574556
  • P. Pitra, A.N. Kouamelan, M. ballevre, and J.-J. Peucat, Palaeoproterozoic high-pressure granulite overprint of the Archean continental crust: Evidence for homogeneous crustal thickening (Man Rise, Ivory Coast), J. Metamorph. Geol. 28 (2010), pp. 41–58.10.1111/jmg.2009.28.issue-1
  • R. Joesten and G. Fisher, Kinetics of diffusion-controlled mineral growth in the Christmas Mountains (Texas) contact aureole, Geol. Soc. Am. Bull. 100 (1988), pp. 714–732.10.1130/0016-7606(1988)100<0714:KODCMG>2.3.CO;2
  • L.M. Keller, R. Abart, R. Wirth, D.W. Schmid, and K. Kunze, Enhanced mass transfer through short-circuit diffusion: Growth of garnet reaction rims at eclogite facies conditions, Am. Mineral. 91 (2006), pp. 1024–1038.10.2138/am.2006.2068
  • L.M. Keller, R. Wirth, D. Rhede, K. Kunze, and R. Abart, Asymmetrically zoned reaction rims: Assessment of grain boundary diffusivities and growth rates related to natural diffusion-controlled mineral reactions, J. Metamorph. Geol. 26 (2008), pp. 99–120.10.1111/jmg.2008.26.issue-1
  • R.H. Vernon, A Practical Guide to Rock Microstructure, Cambridge University Press, Cambridge, UK, 2004.10.1017/CBO9780511807206
  • C.B. Carter and H. Schmalzried, The growth of spinel into Al2O3, Philos. Mag. A. 52 (1985), pp. 207–224. 10.1080/01418618508237619
  • D. Hesse, H. Sieber, P. Werner, R. Hillebrand, and J. Heydenreich, Structure, morphology, and misfit accommodation mechanism of Mgln2O4 films grown on MgO(001) substrates by solid state reaction, Zeitschrift Für Physikalische Chemie 187 (1994), pp. 161–178. 10.1524/zpch.1994.187.Part_2.161
  • D.X. Li, P. Pirouz, A.H. Heuer, S. Yadavalli, and C.P. Flynn, A high-resolution electron microscopy study of mgo/al2o3 interfaces and mgal2o4 spinel formation, Philos. Mag. A. 65 (1992), pp. 403–425.10.1080/01418619208201530
  • L.C. Götze, R. Abart, E. Rybacki, L.M. Keller, E. Petrishcheva, and G. Dresen, Reaction rim growth in the system MgO-Al2O3-SiO2 under uniaxial stress, Miner. Petrol. 99 (2009), pp. 263–277.
  • L.C. Götze, R. Abart, R. Milke, S. Schorr, I. Zizak, R. Dohmen, and R. Wirth, Growth of magnesio-aluminate spinel in thin-film geometry: In situ monitoring using synchrotron X-ray diffraction and thermodynamic model, Phys. Chem. Minerals 41 (2014), pp. 681–693.10.1007/s00269-014-0682-0
  • P. Jeřábek, R. Abart, E. Rybacki, and G. Habler, Microstructure and texture evolution during growth of magnesio-aluminate spinel at corundum-periclase interfaces under uniaxial load: The effect of stress concentration on reaction progress, Am. J. Sci. 314 (2014), pp. 940–965.10.2475/05.2014.02
  • L.M. Keller, L.C. Gotze, E. Rybacki, G. Dresen, and R. Abart, Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics, Am. Mineral. 95 (2010), pp. 1399–1407.10.2138/am.2010.3372
  • E.B. Watson and J.D. Price, Kinetics of the reaction MgO+Al2O3 -> MgAl2O4 and Al-Mg interdiffusion in spinel at 1200 to 2000 degrees C and 10 to 40 GPa, Geochim. Cosmochim. Acta 66 (2002), pp. 2123–2138.10.1016/S0016-7037(02)00827-X
  • R.C. Rossi and R.M. Fulrath, Epitaxial growth of spinel by reaction in the solid state, J. Am. Ceram. Soc. 46 (1963), pp. 145–149.10.1111/jace.1963.46.issue-3
  • D. Hesse, S.T. Senz, R. Scholz, P. Werner, and J. Heydenreich, Structure and morphology of the reaction fronts during the formation of MgAl2O4 thin films by solid state reaction between R-cut sapphire substrates and MgO films, Interface Sci. 2 (1994), pp. 221–237.
  • E. Koch and C. Wagner, Über die Bildung von Ag2HgJ4 aus AgJ und HgJ2 durch Reaktion im festen Zustand, Zeitschrift Für Physikalische Chemie 34 (1936), pp. 317–321.
  • W.P. Whitney II and V.S. Stubican, Interdiffusion studies in the system MgO-Al2O3, J. Phys. Chem. Solids 32 (1971), pp. 305–312.10.1016/0022-3697(71)90015-1
  • R. Abart, J. Svoboda, P. Jeřábek, E. Povoden-Karadeniz, and G. Habler, Interlayer growth kinetics of a binary solid-solution based on the thermodynamic extremal principle: Application to the formation of spinel at periclase-corundum contacts, Am. J. Sci. 316 (2016), pp. 309–328.10.2475/04.2016.01
  • H. Sieber, D. Hesse, P. Werner, and S. Senz, Differences in the defect structure of the reaction fronts of solid state reactions within interface- and diffusion-controlled reaction regimes, Defect Diffus. Forum 143–147 (1997), pp. 649–654.10.4028/www.scientific.net/DDF.143-147
  • H. Sieber, D. Hess, and P. Werner, Misfit accommodation mechanisms at moving reaction fronts during topotaxial spinel-forming thin-film solid-state reactions: A high-resolution transmission electron microscopy study of five spinels of different misfits, Philos. Mag. A 75 (1997), pp. 889–908.10.1080/01418619708214000
  • H. Sieber, P. Werner, and D. Hesse, The atomic structure of the reaction front as a function of the kinetic regime of a spinel-forming solid-state reaction, Philos. Mag. A 75 (1997), pp. 909–924.10.1080/01418619708214001
  • F. Bachmann, R. Hielscher, and H. Schaeben, Texture analysis with MTEX – Free and open source software toolbox, Sol. St. Phen. 160 (2010), pp. 63–68.10.4028/www.scientific.net/SSP.160
  • R. Hielscher, H. Schaeben, and H. Siemes, Orientation distribution within a single hematite crystal, Math. Geosci. 42 (2010), pp. 359–375.10.1007/s11004-010-9271-z
  • P.P. Dholabhai, G. Pilania, J.A. Aguiar, A. Misra, and B.P. Uberuaga, Termination chemistry-driven dislocation structure at SrTiO3/MgO heterointerfaces, Nat. Commun. 5 (2014), pp. 1–7.
  • W. Bollmann, Crystal Defects and Crystalline Interfaces, Springer, Berlin Heidelberg, 1970.10.1007/978-3-642-49173-3
  • E. Nes, N. Ryum, and O. Hunderi, On the zener drag, Acta Metall. 33 (1985), pp. 11–22.10.1016/0001-6160(85)90214-7
  • H. Sieber, D. Hesse, X. Pan, S. Senz, and J. Heydenreich, TEM investigations of spinel‐forming solid state reactions: Mechanism, film orientation, and interface structure during MgAl2O4 formation on MgO (001) and Al2O3 (1-12) single crystal substrates, Z. Anorg. Allg. Chem. 622 (1996), pp. 1658–1666.10.1002/(ISSN)1521-3749

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.