163
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Temperature-dependent model for hole transport mechanism in a poly(1.8-diaminocarbazole)/Si structure

, &
Pages 2600-2614 | Received 21 Sep 2015, Accepted 04 Jul 2016, Published online: 28 Jul 2016

References

  • H. Hoppe and N.S. Sariciftci, Organic solar cells: An overview, J. Mater. Res. 19 (2004), pp. 1924–1945.
  • M. Muccini, A bright future for organic field-effect transistors, Nat. Mater. 5 (2006), pp. 605–613.
  • S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, White organic light-emitting diodes with fluorescent tube efficiency, Nature 459 (2009), pp. 234–238.
  • V. Janardhanam, I. Jyothi, K.-S. Ahn, and C.-J. Choi, Temperature-dependent current–voltage characteristics of Se Schottkycontact to n-type Ge, Thin Solid Films 546 (2013), pp. 63–68.
  • W. Schottky, Zur Halbleitertheorie der Sperrschict-und Spitzengleichrichter [Semiconductor theory of the junction and peak rectifiers], Z. Phys. 113 (1939), pp. 367–414.
  • J.G. Simmons, Richardson-Schottky Effect in Solids, Phys. Rev. Lett. 15 (1965), pp. 967–968.
  • K.C. Kao and W. Hwang, Electrical Transport in Solids, Pergamon, Oxford, 1981.
  • M.A. Lampert and P. Mark, Current Injection in Solids, Academic, New York, NY, 1970.
  • M.A. Lampert, Simplified theory of space-charge-limited currents in an insulator with traps, Phys. Rev. 103 (1956), pp. 1648–1656.
  • S. Zafar, R.E. Jones, B. Jiang, B. White, V. Kaushik, and S. Gillespie, The electronic conduction mechanism in barium strontium titanate thin films, Appl. Phys. Lett. 73 (1998), pp. 3533–3535.
  • Y.-B. Lin and J.Y.-M. Lee, The temperature dependence of the conduction current in Ba0.5Sr0.5TiO3 thin-film capacitors for memory device applications, J. Appl. Phys. 87 (2000), pp. 1841–1843.
  • A.A. Al-Tabbakh, Fowler–Nordheim plot characteristics for ZnO virtual field emitter array, Phil. Mag. 95 (2015), pp. 2839–2850.
  • S.M. Size, Physics of Semiconductor Devices, Wiley, New York, NY, 1979.
  • A.M. Amar, R.D. Gould, and A.M. Saleh, Structural and electrical properties of the α-form of metal-free phthalocyanine (α-H2Pc) semiconducting thin films, Curr. Appl. Phys. 2 (2002), pp. 455–460.
  • R.D. Gould and T.S. Shafai, Conduction in lead phthalocyanine thin films with aluminium electrodes, Superficies y Vacío 9 (1999), pp. 226–229.
  • L. Hongri, S. Yuxia, and W. Xiuzhang, Study of the electric properties of PbTiO3–BiFeO3 multilayer film structure, J. Phys. D: Appl. Phys. 41 (2008), p. 095302.
  • S. Park, W.M. Yun, L.H. Kim, S. Park, S.H. Kim, and C.E. Park, Inorganic/organic multilayer passivation incorporating alternating stacks of organic/inorganic multilayers for long-term air-stable organic light-emitting diodes, Org. Electron. 14 (2013), pp. 3385–3391.
  • D. Xie, Y. Zang, Y. Luo, X. Han, T. Ren, and L. Liu, Structural, ferroelectric, dielectric, and magnetic properties of BiFeO3/Bi3.15Nd0.85Ti3O12 multilayer films derived by chemical solution deposition, J. Appl. Phys. 105 (2009), p. 084109.
  • Y. Yu, Z. Wu, L. He, B. Jiao, and X. Hou, A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices, Thin Solid Films 589 (2015), pp. 852–856.
  • S. Iakovlev, C.H. Solterbeck, M. Kuhnke, and M. Es-Souni, Multiferroic BiFeO3 thin films processed via chemical solution deposition: Structural and electrical characterization, J. Appl. Phys. 97 (2005), p. 094901.
  • R. Barman and D. Kaur, Leakage current behavior of BiFeO3/BiMnO3 multilayer fabricated by pulsed laser deposition, J. Alloys Compd. 644 (2015), pp. 506–512.
  • M.J. Calderon, S. Liang, R. Yu, J. Salafranca, S. Dong, S. Yunoki, L. Brey, A. Moreo, and E. Dagotto, Magnetoelectric Coupling at the Interface of BiFeO3/La0.7Sr0.3MnO3 Multilayers, Phys. Rev. B 84 (2011), p. 024422.
  • P. Gautam, S.K. Singh, and R.P. Tandon, Mechanism for leakage current conduction in manganese doped Bi3.25La0.75Ti3O12 (BLT) ferroelectric thin films, J. Alloys Compd. 606 (2014), pp. 132–138.
  • A. Baba, K. Onishi, W. Knoll, and R.C. Advincula, Investigating work function tunable hole-ınjection/transport layers of electrodeposited polycarbazole network thin films, J. Phys. Chem. 108 (2004), pp. 18949–18955.
  • M. Skompska, M.J. Chmielewski, and A. Tarajko, Poly(1,8-diaminocarbazole) – A novel conducting polymer for sensor applications, Electrochem. Commun. 9 (2007), pp. 540–544.
  • J.V. Grazulevicius, P. Strohriegl, J. Pielichowski, and K. Pielichowski, Carbazole-containing polymers: Synthesis, properties and applications, Prog. Polym. Sci. 28 (2003), pp. 1297–1353.
  • D.B. Romero, M. Schaer, M. Leclerc, D. Ades, A. Siove, and L. Zuppiroli, The role of carbazole in organic light-emitting devices, Synth. Met. 80 (1996), pp. 271–277.
  • A. Tarajkoa, A.M. Kaminska, M.J. Chmielewski, J. Bukowska, and M. Skompska, Electrochemical and spectroscopic characterization of poly(1,8-diaminocarbazole): Part II. Electrochemical, in situ vis/NIR and Raman studies of redox reaction of PDACz in protic and aprotic media, Electrochim. Acta 54 (2009), pp. 4751–4759.
  • M.J. Chmielewski, A short multigram synthesis of 1.8-diaminocarbazole, Synthesis 2010 (2010), pp. 3067–3069.
  • M. Skompska and A.T. Wazny, Electrochemical quartz crystal microbalance studies of polymerization and redox process of poly(1,8-diaminocarbazole) in protic and aprotic solutions, Electrochimica Acta 56 (2011), pp. 3494–3499.
  • W. Kern, Handbook of Semiconductor Cleaning Procedure, Noyes, New York, NY, 1993.
  • P. Gautam, S. Bhattacharyya, S.K. Singh, R. Kumar, and R.P. Tandon, Effect of zirconium doping on ferroelectric properties and leakage-current mechanism in Bi3.25La0.75Ti3O12 (BLT) thin films, Phys. Status Solidi B 248 (2011), pp. 1010–1017.
  • H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, Clerendon, Oxford, 1988, pp. 73–99.
  • M. Soylu, B. Abay, and Y. Onganer, Electrical characteristics of Au/Pyronine-B/moderately doped n-type InP Schottky structures in a wide temperature range, J. Alloys Compd. 509 (2011), pp. 5105–5111.
  • H.C. Card and E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes, J Phys. D 4 (1971), pp. 1589–1601.
  • S. Altındal, S. Karadeniz, N. Tugluoglu, and A. Tataroglu, The role of interface states and series resistance on the I–V and C–V characteristics in Al/SnO2/p-Si Schottky diodes, Solid State Electron. 47 (2003), pp. 1847–1854.
  • S. Sönmezoglu and S. Akın, High performance GaAs metal-insulator-semiconductor devices using TiO2 as insulator layer, Curr. Appl. Phys. 12 (2012), pp. 1372–1377.
  • V. Janardhanam, A.A. Kumar, V.R. Reddy, and P.N. Reddy, Study of current–voltage–temperature (I–V–T) and capacitance–voltage–temperature (C–V–T) characteristics of molybdenum Schottky contacts on n-InP (100), J. Alloys Compd. 485 (2009), pp. 467–472.
  • K.C. Kao and W. Hwang, Electrical Transport in Solids, Pergamon, Oxford, 1981.
  • C. Godety and S. Kumar, Field-enhanced electrical transport mechanisms in amorphous carbon films, Phil. Mag. 83 (2003), pp. 3351–3365.
  • R. Singh and A.K. Narula, Junction properties of aluminum/polypyrrole (polypyrrole derivatives) Schottky diodes, Appl. Phys. Lett. 71 (1997), pp. 2845–2847.
  • A.F. Qasrawi and N.M. Gasanly, Space-charge-limited currents and photoconductive properties of Tl2InGaSe4 layered crystals, Phil. Mag. 88 (2008), pp. 2899–2906.
  • H. Yang, M. Jain, N.A. Suvorova, H. Zhou, H.M. Luo, D.M. Feldmann, P.C. Dowden, R.F. De Paula, S.R. Foltyn, and Q.X. Jia, Temperature-dependent leakage mechanisms of Pt/BiFeO3/SrRuO3 thin film capacitors, Appl. Phys. Lett. 91 (2007), p. 072911.
  • K. Kumari, S. Chand, P. Kumar, S.N. Sharma, V.D. Vankar, and V. Kumar, Effect of CdSe quantum dots on hole transport in poly(3-hexylthiophene) thin films, Appl. Phys. Lett. 92 (2008), p. 263504.
  • G. Roll, M. Goldbach, and L. Frey, Leakage current and defect characterization of p+n-source/drain diodes, Microelectron. Reliab. 51 (2011), pp. 2081–2085.
  • S. Kumar, R. Arora, and A. Kumar, High-field conduction in a-Se80Te20 and a-Se80Te10M10 (M=Ag, Cd or Sb), Physica B 183 (1993), pp. 172–178.
  • K. Goksen and N.M. Gasanly, Determination of trapping parameters in n-Ga4Se3S by thermally stimulated current measurements, Phil. Mag. 89 (2009), pp. 435–447.
  • M. Katsuhata, K. Koura, and S. Yoshida, Temperature dependence of capacitance of silicon p-n step junctions, Jpn. J. Appl. Phys. 17 (1978), pp. 2063–2064.
  • R.K. Gupta, F. Yakuphanoglu, H. Hasar, and A.A. Al-Khedhairy, p-Si/DNA photoconductive diode for optical sensor applications, Synth. Metals 161 (2011), pp. 2011–2016.
  • P. Matheswaran, R. Sathyamoorthy, R. Saravanakumar, and S. Velumani, AC and dielectric properties of vacuum evaporated InTe bilayer thin films, Mater. Sci. Eng. B 174 (2010), pp. 269–272.
  • H. Kim, H. Kim, and D.-W. Kim, Effect of oxygen plasma treatment on the electrical properties in Ag/bulk ZnO Schottky diodes, Vacuum 101 (2014), pp. 92–97.
  • M.S. Pratap Reddy, J.-H. Lee, J.-S. Jang, Frequency dependent series resistance and interface states in Au/bio-organic/n-GaN Schottky structures based on DNA biopolymer, Synth. Met. 185–186 (2013), pp. 167–171.
  • S. Chattopadhyay, L.K. Bera, S.K. Ray, P.K. Bose, and C.K. Maiti, Extraction of interface state density of Pt/p-strained-Si Schottky diode, Thin Solid Films 335 (1998), pp. 142–145.
  • A. Böhler, P. Urbach, D. Ammermann, and W. Kowalsky, Organic molecular beam deposition: Technology and applications in electronics and photonics, Mater. Sci. Eng. B 51 (1998), pp. 58–65.
  • H. Norde, A modified forward I–V plot for Schottky diodes with high series resistance, J. Appl. Phys. 50 (1979), pp. 5052–5053.
  • S. Chand and J. Kumar, Current transport in Pd2Si/n-Si(100) Schottky barrier diodes at low temperatures, Appl. Phys. A 63 (1996), pp. 171–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.