77
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of gamma-ray irradiation on isothermal crystallization of biodegradable poly(ethylene succinate)

, , &
Pages 2615-2631 | Received 26 Aug 2015, Accepted 06 Jul 2016, Published online: 22 Jul 2016

References

  • M. Mochizuki, S. Murase, M. Inagaki, Y. Kanmuri, and K. Kudo, Structure and biodegradation of fibers made from poly(butylene succinate-co-ethylene succinate)s, Sen-I Gakkaishi 53 (1997), pp. 348–355.
  • J.P. Liu, S.A. He, and X.P. Qiao, Spherulitic structure and morphology of poly(ethylene succinate)/poly(ethylene oxide) (Pes/Peo) blends with one-step crystallization, Chin. J. Polym. Sci. 26 (2008), pp. 697–703.
  • Z.B. Qiu, T. Ikehara, and T. Nishi, Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide), Polymer 44 (2003), pp. 2799–2806.
  • K. Kuwabara, Z. Gan, T. Nakamura, H. Abe, and Y. Doi, Temperature dependence of the molecular motion in the crystalline region of biodegradable poly(butylene adipate), poly(ethylene succinate), and poly(butylene succinate), Polym. Degrad. Stab. 84 (2004), pp. 105–114.
  • C.S. Fuller and C.L. Erickson, An X-ray study of some linear polyesters, J. Am. Chem. Soc. 59 (1937), pp. 344–351.
  • A.S. Ueda, Y. Chatani, and H. Tadokoro, Structural studies of polyesters .4. Molecular and crystal structures of poly(ethylene succinate) and poly(ethylene oxalate), Polym. J. 2 (1971), pp. 387–397.
  • Z.H. Gan, H. Abe, and Y. Doi, Biodegradable poly(ethylene succinate) (PES). 1. Crystal growth kinetics and morphology, Biomacromolecules 1 (2000), pp. 704–712.
  • Z.Y. He, Y.R. Liang, and C.C. Han, Confined nucleation and growth of poly(ethylene oxide) on the different crystalline morphology of poly(butylene succinate) from a miscible blend, Macromolecules 46 (2013), pp. 8264–8274.
  • T. Ikehara, H. Kimura, and Z.B. Qiu, Penetrating spherulitic growth in poly(butylene adipate-co-butylene succinate)/poly(ethylene oxide) blends, Macromolecules 38 (2005), pp. 5104–5108.
  • C.J. Tsai, M. Chen, H.Y. Lu, W.C. Chang, and C.H. Chen, Crystal growth rates and master curves of poly(ethylene succinate) and its copolyesters using a nonisothermal method, J. Polym. Sci. Part B-Polym. Phys. 48 (2010), pp. 932–939.
  • T. Iwata, Y. Doi, K. Isono, and Y. Yoshida, Morphology and enzymatic degradation of solution-grown single crystals of poly(ethylene succinate), Macromolecules 34 (2001), pp. 7343–7348.
  • Y. Ichikawa, K. Noguchi, K. Okuyama, and J. Washiyama, Crystal transition mechanisms in poly(ethylene succinate), Polymer 42 (2001), pp. 3703–3708.
  • I.A. Alraheil and A.M.A. Qudah, On the triple melting behavior of poly(ethylene succinate), Polym. Int. 37 (1995), pp. 249–254.
  • Z.B. Qiu, T. Ikehara, and T. Nishi, Crystallization behaviour of biodegradable poly(ethylene succinate) from the amorphous state, Polymer 44 (2003), pp. 5429–5437.
  • Z.B. Qiu, M. Komura, and T. Nish, DNC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate), Polymer 44 (2003), pp. 7781–7785.
  • H.Y. Lu, M. Chen, C.S. Yang, C.H. Chen, and C.J. Tsai, Characterization, crystallization kinetics, and melting behavior of poly(ethylene succinate) copolyester containing 10 mol % butylene succinate, J. Polym. Sci. Part B-Polym. Phys. 46 (2008), pp. 2431–2442.
  • C.K. Liu, T. Nyuyen, and S. Lee, Melting and chemical behaviors of isothermally crystallized gamma-irradiated syndiotactic polystyrene, Polymer 50 (2009), pp. 499–509.
  • Y.W. Ting, T. Nguyen, C.T. Hu, C.C. Chen, and S. Lee, Effect of gamma ray on isothermal crystallization kinetics of syndiotactic polystyrene, J. Mater. Res. 28 (2013), pp. 3053–3062.
  • M. Avrami, Granulation, phase change, and microstructure – Kinetics of phase change III, J. Chem. Phys. 9 (1941), pp. 177–184.
  • M. Avrami, Kinetics of phase change I – General theory, J. Chem. Phys. 7 (1939), pp. 1103–1112.
  • M. Avrami, Kinetics of phase change. II transformation-time relations for random distribution of nuclei, J. Chem. Phys. 8 (1940), pp. 212–224.
  • L. Morgan, Crystallization phenomena in polymers. II. The course of the crystallization, Philos. Trans. Roy. Soc. A Math. Phys. Sci. 247 (1954), pp. 13–22.
  • P.J. Flory, Thermodynamics of crystallization in high polymers. 4. A theory of crystalline states and fusion in polymers, copolymers, and their mixtures with diluents, J. Chem. Phys. 17 (1949), pp. 223–240.
  • L. Mandelkern, F.A. Quinn, Jr., and P.J. Flory, Crystallization kinetics in high polymers. I. Bulk polymers, J. Appl. Phys. 25 (1954), pp. 830–839.
  • J.I. Lauritze, Effect of a finite substrate length upon polymer crystal lamellar growth-rate, J. Appl. Phys. 44 (1973), pp. 4353–4359.
  • J.D. Hoffman, Role of reptation in the rate of crystallization of polyethylene fractions from the melt, Polymer 23 (1982), pp. 656–670.
  • J.D. Hoffman, Regime-III crystallization in melt-crystallized polymers – The variable cluster model of chain folding, Polymer 24 (1983), pp. 3–26.
  • J.D. Hoffman and R.L. Miller, Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: Theory and experiment, Polymer 38 (1997), pp. 3151–3212.
  • G.Z. Papageorgiou, D.N. Bikiaris, and D.S. Achilias, Effect of molecular weight on the cold-crystallization of biodegradable poly(ethylene succinate), Thermochim. Acta 457 (2007), pp. 41–54.
  • H. Marand, J.N. Xu, and S. Srinivas, Determination of the equilibrium melting temperature of polymer crystals: Linear and nonlinear Hoffman-Weeks extrapolations, Macromolecules 31 (1998), pp. 8219–8229.
  • A.J. Muller, J. Albuerne, L. Marquez, J.M. Raquez, P. Degee, P. Dubois, J. Hobbs, and I.W. Hamley, Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers, Faraday Disuss. 128 (2005), pp. 231–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.