1,661
Views
12
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Thermodynamic aspects of carbon redistribution during ageing and tempering of Fe–Ni–C alloys

, &
Pages 2632-2648 | Received 01 Feb 2016, Accepted 07 Jul 2016, Published online: 26 Jul 2016

References

  • K.A. Taylor, L. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, and J.B. Vander Sande, Spinodal decomposition during aging of Fe-Ni-C martensites, Metall Trans. 20A (1989), pp. 2717–2737.
  • S.B. Ren, T. Tadaki, K. Shimizu, and X.T. Wang, Electron diffraction study of aging processes in Fe-1.83 wt pct C martensite at room temperature, Metall. Mater. Trans. 26A (1995), pp. 2001–2005.
  • Y. Ohmori and I. Tamura, An interpretation of the carbon redistribution process during aging of high carbon martensite, Metall. Trans. 23A (1992), pp. 2147–2158.
  • Y. Ohmori and I. Tamura, Authors’ reply, Metall. Mater. Trans. 24A (1993), pp. 2588–2589.
  • K.A. Taylor and M. Cohen, Aging of ferrous martensites, Prog. Mater. Sci. 36 (1992), pp. 225–272.
  • F.E. Fujita, On the lattice deformation in martensite transformation in steel, Metall. Trans. 8A (1977), pp. 1727–1736.
  • D.E. Jiang and E.A. Carter, Carbon dissolution and diffusion in ferrite and austenite from first principles, Phys. Rev. B. 67 (2003), pp. 1–11.
  • C. Zener, Theory of strain interaction of solute atoms, Phys. Rev. 74 (1948), pp. 639–647.
  • R. Naraghi, M. Selleby, and J. Ågren, Thermodynamics of stable and metastable structures in Fe-C system, CALPHAD. 46 (2014), pp. 148–158.
  • C.W. Sinclair, M. Perez, R.G.A. Veiga, and A. Week, Molecular dynamics study of the ordering of carbon in highly supersaturated α-Fe, Phys. Rev. B. 81 (2010), pp. 1–9.
  • M. van Genderen, A. Böttger, R. Cernik, and E. Mittemeijer, Early stages of decomposition in iron-carbon and iron-nitrogen martensites: Diffraction analysis using synchrotron radiation, Metall. Trans. A. 24 (1993), pp. 1965–1973.
  • D. Kalish and M. Cohen, Structural changes and strengthening in the strain tempering of martensite, Mater. Sci. Eng. 6 (1970), pp. 156–166.
  • E. Clouet, S. Garruchet, H. Nguyen, M. Perez, and C. Becquart, Dislocation interaction with C in α-Fe: A comparison between atomistic simulations and elasticity theory, Acta Mater. 56 (2008), pp. 3450–3460.
  • R.G.A. Veiga, M. Perez, C.S. Becquart, E. Clouet, and C. Domain, Comparison of atomistic and elasticity approaches for carbon diffusion near line defects in α--iron, Acta Mater. 59 (2011), pp. 6963–6974.
  • R.G. Veiga, M. Perez, C.S. Becquart, and C. Domain, Atomistic modeling of carbon Cottrell atmospheres in bcc iron, J. Phys.: Condens. Matter. 25 (2013), p. 025401.
  • C.J. Först, J. Slycke, K.J. van Vliet, and S. Yip, Point defect concentrations in metastable Fe-C alloys, Phys. Rev. Lett. 96 (2006), pp. 1–4.
  • C. Domain, C.S. Becquart, and J. Foct, Ab initio study of foreign interstitial atom (C, N) iinteraction with intrinstic point defects in α-Fe, Phys. Rev. B. 69 (2004), pp. 1–16.
  • B. Kim, J. Sietsma, and M. Santofimia, Spinodal decomposition and the carbon solubility in BCC Fe-C, in Proceedings of the International Conference on Solid-solid Phase Transformations in Inorganic Materials (PTM), Whistler, BC, 2015, pp. 537–538.
  • J. Wilde, A. Cerezo, and G.D.W. Smith, Three-dimensional atomic-scale mapping of a Cottrell atmospheres around a dislocation in iron, Scripta Mater. 43 (2000), pp. 39–48.
  • F. Danoix, H. Zapolsky, S. Allain, and M. Goune, Atom probe tomogaphy investigation of carbon segregation and redistribution from supersaturated virgin Fe-C martensites, in Proceedings of the international conference on solid-solid phase transformations in inorganic materials (PTM), Whistler, BC, 2015, pp. 537–538.
  • M. Herbig, R. Marceau, L. Morsdorf, and D. Raabe, Spinodal decomposotion of Fe-Ni-C martensite by room temperature redistribution of carbon investigated by correlative ECCI/TEM/APT, in Proceedings of the international conference on solid-solid phase transformations in inorganic materials (PTM), Whistler, BC, 2015, pp. 537–538.
  • S.P. Thompson, J.E. Parker, J. Potter, T.P. Hill, A. Birt, T.M. Cobb, F. Yuan, and C.C. Tang, Beamline I11 at Diamond: A new instrument for high resolution powder diffraction, Rev. Sci. Instrum. 80 (2009), pp. 1–9.
  • L. Lutterotti, S. Matties, H.R. Wenk, A.S. Schultz, and J.W. Richardson, Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra, J. Appl. Phys. 71 (1997), pp. 594–600.
  • J.W. Christian, Tetragonal martensites in ferrous alloys -- A critique, Mater. T. JIM. 33 (1992), pp. 208–214.
  • L. Cheng, A. Böttger, T. de Keijser, and E. Mittemeijer, Lattice parameters of iron-carbon and iron-nitrogen martensites and austenites, Scripta Mater. Metall. 24 (1990), pp. 509–514.
  • R. Reed, and R. Schramm, Lattice parameters of martensite and austenite in Fe–Ni alloys, J. Appl. Phys. 40 (1969), pp. 3453–3458.
  • S. Nagakura, Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction, Metall Trans. 14A (1983), pp. 1025–1031.
  • S. Morito, J. Nishikawa, and T. Maki, Dislocation density within lath martensite in Fe-C and Fe-Ni alloys, ISIJ Int. 43 (2003), pp. 1475–1477.
  • Y. Ni, W. Rao, and A.G. Khachaturyan, Pseudospinodal mode of decomposition in films and formation of chessboard-like nanosructure, Nano Lett. 9 (2009), pp. 3275–3281.
  • J.H. Jang, H.K.D.H. Bhadeshia, and D.W. Suh, Solubility of carbon in tetragonal ferrite in equilibrium with austenite, Scripta Mater. 68 (2013), pp. 195–198.
  • C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, and H.K.D.H. Bhadeshia, Experimental evidence for non-cubic bainitic ferrite, Scripta Mater. 69 (2013), pp. 409–412.
  • C. Garcia-Mateo, J. Jimenez, H.W. Yen, M. Miller, L. Morales-Rivas, M. Kuntz, S. Ringer, J.R. Yang, and F. Caballero, Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality, Acta Mater. 91 (2015), pp. 162–173.
  • E.V. Pereloma, Critical assessment: On carbon excess in bainitic ferrite, Mater. Sci. Tech. 32 (2015), pp. 99–103. Available at http://dx.doi.org/10.1179/1743284715Y.0000000139.
  • T. Massalski and D. Laughlin, The surprising role of magnetism on the phase stability of Fe (Ferro), CALPHAD. 33 (2009), pp. 3–7.
  • A. Westgren and G. Phagmn, X-ray studies on the crystal structure of steel, J. Iron Steel I. 105 (1922), pp. 241–273.