481
Views
11
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructural evolution and thermal stability of Fe–Zr metastable alloys developed by mechanical alloying followed by annealing

, , , &
Pages 2649-2670 | Received 24 Feb 2016, Accepted 08 Jul 2016, Published online: 25 Jul 2016

References

  • K. Oka, S. Ohnuki, S. Yamashita, N. Akasaka, S. Ohtsuka, and H. Tanigawa, Structure of nano-size oxides in ODS steels and its stability under electron irradiation, Mater. Trans. 48 (2007), pp. 2563–2566.10.2320/matertrans.MD200715
  • D. Arian and J.P. Abriata, The Fe-Zr system, Bull. Alloy Phase Diagrams 9 (1988), pp. 597–604.
  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd., Oxford, 2004.
  • H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33 (1989), pp. 223–315.10.1016/0079-6425(89)90001-7
  • R. Birringer, Nanocrystalline materials, Mater. Sci. Eng. A 117 (1989), pp. 33–43.10.1016/0921-5093(89)90083-X
  • B. Günther, A. Kumpmann, and H.D. Kunze, Secondary recrystallization effects in nanostructured elemental metals, Scripta Metall. Mater. 27 (1992), pp. 833–838.10.1016/0956-716X(92)90401-Y
  • G. Hibbard, K.T. Aust, G. Palumbo, and U. Erb, Thermal stability of electrodeposited nanocrystalline cobalt, Scripta Mater. 44 (2001), pp. 513–518.10.1016/S1359-6462(00)00628-X
  • U. Klement, U. Erb, A.M. El-Sherik, and K.T. Aust, Thermal stability of nanocrystalline Ni, Mater. Sci. Eng. A 203 (1995), pp. 177–186.10.1016/0921-5093(95)09864-X
  • T.R. Malow and C.C. Koch, Grain growth in nanocrystalline iron prepared by mechanical attrition, Acta Mater. 45 (1997), pp. 2177–2186.10.1016/S1359-6454(96)00300-X
  • C.C. Koch, Structural nanocrystalline materials: An overview, J. Mat. Sci. 42 (2007), pp. 1403–1414.10.1007/s10853-006-0609-3
  • B.K. VanLeeuwen, K.A. Darling, C.C. Koch, R.O. Scattergood, and B.G. Butler, Thermal stability of nanocrystalline Pd81Zr19, Acta Mater. 58 (2010), pp. 4292–4297.10.1016/j.actamat.2010.04.023
  • J.H. Driver, Stability of nanostructured metals and alloys, Scripta Mater. 51 (2004), pp. 819–823.10.1016/j.scriptamat.2004.05.014
  • J.W. Cahn, The impurity-drag effect in grain boundary motion, Acta Metall. 10 (1962), pp. 789–798.10.1016/0001-6160(62)90092-5
  • S. Libardi, M. Leoni, L. Facchini, M. D’Incau, P. Scardi, and A. Molinari, Effect of the dispersion of nanometric silica particles on the thermal stability of a nanostructured iron based powder, Mater. Sci. Eng. A 445–446 (2007), pp. 244–250.10.1016/j.msea.2006.09.035
  • M. Hillert, On the theory of normal and abnormal grain growth, Acta Metall. 13 (1965), pp. 227–238.10.1016/0001-6160(65)90200-2
  • S.P. Ringer, W.B. Li, and K.E. Easterling, On the interaction and pinning of grain boundaries by cubic shaped precipitate particles, Acta Metall. 37 (1989), pp. 831–841.10.1016/0001-6160(89)90010-2
  • Z. Chen, F. Liu, H.F. Wang, W. Yang, G.C. Yang, and Y.H. Zhou, A thermokinetic description for grain growth in nanocrystalline materials, Acta Mater. 57 (2009), pp. 1466–1475.10.1016/j.actamat.2008.11.025
  • J. Li, J. Wang, and G. Yang, On the stagnation of grain growth in nanocrystalline materials, Scripta Mater. 60 (2009), pp. 945–948.10.1016/j.scriptamat.2009.02.015
  • E.D. Hondros, M.P. Seah, R.W. Cahn, and P. Haasen, Interfacial and Surface Microchemistry (Chapter 13): Physical Metallurgy, 4th ed., Elsevier Science Publisher, BV, North-Holland, Amsterdam, 1996.
  • J. Weissmüller, Alloy effects in nanostructures, Nanostruct. Mater. 3 (1993), pp. 261–272.10.1016/0965-9773(93)90088-S
  • J. Weissmüller, Alloy thermodynamics in nanostructures, J. Mater. Res. 9 (1994), pp. 4–7.10.1557/JMR.1994.0004
  • F. Liu and R. Kirchheim, Grain boundary saturation and grain growth, Scripta Mater. 51 (2004), pp. 521–525.10.1016/j.scriptamat.2004.05.042
  • R. Kirchheim, Grain coarsening inhibited by solute segregation, Acta Mater. 50 (2002), pp. 413–419.10.1016/S1359-6454(01)00338-X
  • P.C. Millett, R.P. Selvam, and A. Saxena, Stabilizing nanocrystalline materials with dopants, Acta Mater. 55 (2007), pp. 2329–2336.10.1016/j.actamat.2006.11.028
  • D.L. Beke, C. Cserhati, and I.A. Szabo, Segregation inhibited grain coarsening in nanocrystalline alloys, J. Appl. Phys. 95 (2004), pp. 4996–5001.10.1063/1.1688461
  • T.N. Baker, Role of zirconium in microalloyed steels: A review, Mater. Sci. Technol. 31 (2015), pp. 265–294.10.1179/1743284714Y.0000000549
  • J.W. Halley, Grain-growth inhibitor in steel, Trans. Am. Inst. Min. Met. Eng. 167 (1946), pp. 224–236.
  • K.A. Darling, B.K. VanLeeuwen, C.C. Koch, and R.O. Scattergood, Thermal stability of nanocrystalline Fe-Zr alloys, Mater. Sci. Eng. A 527 (2010), pp. 3572–3580.10.1016/j.msea.2010.02.043
  • C.C. Wei, A. Aitkaliyeva, Z.P. Luo, A. Ewh, Y.H. Sohn, J. Rory Kennedy, B.H. Sencer, M. T. Myers, M. Martin, J. Wallace, M. J. General, and L. Shao, Understanding the phase equilibrium and irradiation effects in Fe-Zr diffusion couples, J. Nucl. Mater. 432 (2013), pp. 205–211.
  • H. Kotan, K.A. Darling, M. Saber, C.C. Koch, and R.O. Scattergood, Effect of zirconium on grain growth and mechanical properties of a ball-milled nanocrystalline FeNi alloy, J. Alloys Compd. 551 (2013), pp. 621–629.10.1016/j.jallcom.2012.10.179
  • M. Saber, H. Kotan, C.C. Koch, and R.O. Scattergood, Thermal stability of nanocrystalline Fe-Cr alloys with Zr additions, Mater. Sci. Eng. A 556 (2012), pp. 664–670.10.1016/j.msea.2012.07.045
  • C. Suryanarayana and M.G. Norton, X-Ray Diffraction, 1st ed., Plenum Publishing Corporation, New York, NY, 1998.10.1007/978-1-4899-0148-4
  • B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2001.
  • C. Suryanarayana, Solid Solubility Extensions in: Mechanical Alloying and Milling, Marcel Dekker, New York, NY, 2004.10.1201/CRCDEKMECENG
  • P.J. Goodhew and J. Humpherys, Electron Microscopy and Analysis, 3rd ed., Taylor & Francis, London, 2001.
  • D.B. Williams and C.B. Carter, Transmission Electron Microscopy- A Text Book for Materials Science, Plenum Publishing Corporation, New York, NY, 1996.
  • A.R. Miedema, P.F. de Châtel, and F.R. de Boer, Cohesion in alloys-fundamentals of a semi-empirical model, Physica B+C 100 (1980), pp. 1–28.10.1016/0378-4363(80)90054-6
  • A.K. Niessen, A.R. Miedema, F.R. de Boer, and R. Boom, Enthalpies of formation of liquid and solid binary alloys based on 3d metals, Physica B+C 151 (1988), pp. 401–432.10.1016/0378-4363(88)90296-3
  • M. Saber, H. Kotan, C.C. Koch, and R.O. Scattergood, Thermodynamic stabilization of nanocrystalline binary alloys, J. Appl. Phys. 113 (2013), pp. 1–10.
  • G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Co., Ltd., London, 1988.
  • K.A. Darling, R.N. Chan, P.Z. Wong, J.E. Semones, R.O. Scattergood, and C.C. Koch, Grain-size stabilization in nanocrystalline FeZr alloys, Scripta Mater. 59 (2008), pp. 530–533.10.1016/j.scriptamat.2008.04.045
  • S. Mula, D. Setman, K. Youssef, R.O. Scattergood, and C.C. Koch, Structural evolution of Cu(1−X)YX alloys prepared by mechanical alloying: Their thermal stability and mechanical properties, J. Alloys Compd. 627 (2015), pp. 108–116.10.1016/j.jallcom.2014.12.114
  • T.D. Shen, R.B. Schwarz, S. Feng, J.G. Swadener, J.Y. Huang, M. Tang, J. Zhang, S.C. Vogel, and Y. Zhao, Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall-Petch relation, Acta Mater. 55 (2007), pp. 5007–5013.10.1016/j.actamat.2007.05.018
  • A.N. Patel and S. Diamond, The effects of non-equilibrium processing in the development of copper alloys, Mater. Sci. Eng. 98 (1988), pp. 329–334.10.1016/0025-5416(88)90180-2
  • T. Shanmugasundaram, M. Heilmaier, B.S. Murty, and V. Sarma, On the Hall–Petch relationship in a nanostructured Al–Cu alloy, Mater. Sci. Eng. A 527 (2010), pp. 7821–7825.10.1016/j.msea.2010.08.070
  • R.O. Scattergood and C.C. Koch, A modified model for hall-petch behavior in nanocrystalline materials, Scripta Metall. Mater. 27 (1992), pp. 1195–1200.10.1016/0956-716X(92)90598-9
  • R.K. Guduru, R.O. Scattergood, C.C. Koch, K.L. Murty, S. Guruswamy, and M.K. McCarter, Mechanical properties of nanocrystalline Fe-Pb and Fe-Al2O3, Scripta Mater. 54 (2006), pp. 1879–1883.10.1016/j.scriptamat.2006.02.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.