944
Views
53
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of alloying elements on room temperature tensile ductility in magnesium alloys

, , &
Pages 2671-2685 | Received 28 Mar 2016, Accepted 05 Jul 2016, Published online: 28 Jul 2016

References

  • J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The activity of non-basal slip systems and dynamic recovery at room temperatrure in fine-grained AZ31B magnesium alloys, Acta Mater. 51 (2003), pp. 2055–2065.10.1016/S1359-6454(03)00005-3
  • A. Gooldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and S.L. Shen, Indentation across size scales and disciplines: Recent developments in experimentation and modeling, Acta Mater. 55 (2007), pp. 4015–4039.10.1016/j.actamat.2006.08.044
  • D. Griffiths, Explainning texture weakening and improved formability in magnesium rare earth alloys, Mater. Sci. Tech. 31 (2015), pp. 10–24.10.1179/1743284714Y.0000000632
  • T. Tsuru, Y. Udagawa, M. Yamaguchi, M. Itakkura, and Y. Kaji, Solution softening in magnesium alloys: The effect of solid solutions on the dislocation core structure and nonbasal slips, J. Phy. Cond. Mater. 25 (2013), p. 022202 (5p). 10.1088/0953-8984/25/2/022202
  • H. Somekawa and T. Mukai, Nanoindentation creep behavior of grain boundary in pure magnesium, Philo. Mag. Lett. 90 (2010), pp. 883–890.10.1080/09500839.2010.514577
  • J.A. Chapman and D.V. Willson, The room temperature ductility of fine-grain magnesium, J. Inst. Met. 91 (1962–1963) pp. 39–40.
  • H. Somekawa and T. Mukai, Hall-Petch breakdown in fine-grained pure magnesium at low strain rates, Metall. Mater. Trans. 46A (2015), pp. 894–902. 10.1007/s11661-014-2641-2
  • J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama, Grain boundary sliding in AZ31 magnesium alloys at room temperature to 523 K, Mater. Trans. 44 (2003), pp. 445–451. 10.2320/matertrans.44.445
  • H. Somekawa, H. Watanabe, and T. Mukai, Effect of solute atoms on grain boundary sliding in magnesium alloys, Philo. Mag. 94 (2014), pp. 1345–1360.10.1080/14786435.2014.886021
  • W. Fujitani and Y. Umakoshi, Effect of alloying elements on plastic behavior of magnesium alloys with the hcp structure, J. Jpn. Light Metal 45 (1994), pp. 181–186.
  • ASM Specialty Handbook, Magnesium and magnesium alloys, Materials Park, OH, ASM International, 1999.
  • H. Somekawa, T. Inoue, and K. Tsuzaki, Effect of deformation twin on toughness in magnesium binary alloys, Philo. Mag. 95 (2015), pp. 2513–2526. 10.1080/14786435.2015.1065019
  • H. Somekawa, Y. Osawa, A. Singh, K. Washio, A. Kato, and T. Mukai, Effect of micro-alloying elements on deformation behavior in Mg–Y binary alloys, Mater. Trans. 55 (2014), pp. 182–187.10.2320/matertrans.M2013303
  • H. Watanabe, A. Owashi, T. Uesugi, Y. Takigawa, and K. Higashi, Threshold stress for superplasticity in solid solution magnesium alloys, Philo. Mag. 92 (2012), pp. 787–803.10.1080/14786435.2011.634849
  • J.P. Hardorn, K. Hantzschen, S. Yi, J. Bohlen, D. Letzing, J.A. Wollmershauser, and S.R. Agnew, Role of solute in the texture modification during hot deformation of Mg-Rare earth alloys, Metall. Mater. Trans. 43A (2012), pp. 1347–1362.10.1007/s11661-011-0923-5
  • N. Stanford, G. Sha, J.H. Xia, S.P. Ringer, and M.R. Barnett, Solute segregation and texture modification in an extruded magnesium alloy containing gadolinium, Scripta Mater. 65 (2011), pp. 919–921. 10.1016/j.scriptamat.2011.08.012
  • Y. Huang, H. Dieringa, and K.U. Kainer, Effects of Sm segregation and precipitates on creep response of Mg–Sn alloys, Fat. Frac. Eng Mater. Stru. 364 (2013), pp. 308–315.10.1111/ffe.12000
  • M. Bugnet, A. Kula, M. Niewezas, and G.A. Botton, Segregation and clustering of solutes at grain boundaries in Mg-rare earth solid solutions, Acta Mater. 79 (2014), pp. 66–73. 10.1016/j.actamat.2014.06.004
  • J.D. Robson, S.J. Haigh, B. Davis, and D. Griffiths, Grain boundary segregation of rare-earth elements in magnesium alloys, Metal. Mater. Trans. 47A (2016), pp. 522–530. 10.1007/s11661-015-3199-3
  • T. Mukai, K. Hono, H. Somekawa, and T. Honma, Magnesium alloy exhibiting high strength and high ductility and method for production thereof, US Patent. 7871476B2, (2011).
  • M.R. Barnett, Z. Kesharvarz, A.G. Beer, and D. Atweel, Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn, Acta Mater. 52 (2004), pp. 5093–5103. 10.1016/j.actamat.2004.07.015
  • M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, and S. Kamado, Enhanced ductility in high-strength fine-grained magnesium and magnesium alloy sheets processed via multi-pass rolling with lowered temperature, J. Alloys, Comp. 668 (2016), pp. 13–23.10.1016/j.jallcom.2016.01.195
  • S.W. Xu, K. Oh-ishi, H. Sunohara, and S. Kamado, Extruded Mg–Zn–Ca–Mn alloys with low yield anisotropy, Mater. Sci. Eng. A558 (2012), pp. 356–365.10.1016/j.msea.2012.08.012
  • J.W. Christian and S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995), pp. 1–157. 10.1016/0079-6425(94)00007-7
  • M.A. Meyers, O. Vohringer, and V.A. Lubarda, The onset of twining in metals: A constitutive description, Acta Mater. 49 (2001), pp. 4025–4039. 10.1016/S1359-6454(01)00300-7
  • M.R. Barnett, A rationale for the strong dependence of mechanical twining on grain size, Scripta Mater. 59 (2008), pp. 696–698. 10.1016/j.scriptamat.2008.05.027
  • Method for evaluation of tensile properties of metallic superplastic materials, Japanese Industrial Standards Committee, JIS-H7501, (2002).
  • H. Somekawa and C.A. Schuh, Effect of solid solution elements on nanoindentation hardness, rate dependence and incipient plasticity in fine grained magnesium alloys, Acta Mater. 59 (2011), pp. 7554–7563. 10.1016/j.actamat.2011.08.047
  • J. Wadsworth and O.D. Sherby, Superplasticity recent advances and future directions, Prog. Mater. Sci. 33 (1989), pp. 169–221.
  • T.G. Nieh, J. Wadsworth, and O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, MA, 1997.10.1017/CBO9780511525230
  • H.J. Frost and M.F. Ashby, Deformation-mechanism Map, Pergaman Press, Oxford, 1982.
  • H. Kokawa, T. Watanabe, and S. Karashima, Sliding behavior and dislocation structures in aluminum grain boundaries, Philo. Mag. A44 (1981), pp. 1239–1254.10.1080/01418618108235806
  • P.C. Millett, R.P. Selvam, and A. Saxena, Improving grain boundary sliding resistance with segregated dopants, Mater. Sci. Eng. A431 (2006), p. 92–99.10.1016/j.msea.2006.05.074
  • Y. Qi and P.E. Krajewski, Molecular dynamics simulations of grain boundary sliding: The effect of stress and boundary misorientation, Acta Mater. 55 (2007), p. 1555–1563.10.1016/j.actamat.2006.10.016
  • M. Shiga and W. Shinoda, Stress-assisted grain boundary sliding and migration of finite temperatures: A molecular dynamics study, Phy. Rev. B70 (2004), pp. 054102 (9p). 10.1103/PhysRevB.70.054102
  • T.G. Langdon, Effect of surface configuration on grain boundary sliding, Metall. Trans. 3A (1972), p. 797.10.1007/BF02647651
  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006), pp. 881–981.10.1016/j.pmatsci.2006.02.003
  • T. Hirata, S. Tanabe, M. Kohzu, and K. Higashi, Grain boundary character distribution control to inhibit cavitation in superplastic P/M7475, Scripta Mater. 49 (2003), pp. 891–896.10.1016/S1359-6462(03)00434-2
  • F. Sansoz and J.F. Molinari, Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study, Acta Mater. 53 (2005), p. 1931–1944.10.1016/j.actamat.2005.01.007
  • T. Hirata and K. Higashi, The investigation on microcavitation behavior during dynamic recrystallization in P/M7475 aluminum alloy, Scripta Mater. 47 (2002), pp. 1–6.10.1016/S1359-6462(02)00075-1
  • M. Yuasa, T. Nakazawa, and M. Mabuchi, Atomic simulation of grain boundary sliding in Co/Cu twin-phase bicrystals, Mater. Sci. Eng. 527 (2010), pp. 2629–2636.10.1016/j.msea.2009.12.025
  • S. Namilae, N. Chandra, and T.G. Nieh, Atomic simulation of grain boundary sliding in pure and magnesium doped aluminum bicrystals, Scripta Mater. 46 (2002), pp. 49–54.10.1016/S1359-6462(01)01195-2
  • N. Du, Y. Qi, P.G. Krajewsk, and A.F. Bower, The effect of solute atoms on aluminum grain boundary sliding at elevated temperatures, Metal. Mater. Trans. 42A (2011), pp. 651–659.10.1007/s11661-010-0326-z
  • A.J. Detor and C.A. Schuh, Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomic computer simulations in the Ni–W system, Acta Mater. 55 (2007), pp. 4221–4232.10.1016/j.actamat.2007.03.024
  • S.X. McFadden and A.K. Mukherjee, Sulfur and superplasticity in electrodeposited ultrafine-grained Ni, Mater. Sci. Eng. A395 (2005), pp. 265–268.10.1016/j.msea.2004.12.025
  • M. Jimenez-Melendo and A. Dominguez-Rodriguez, Like-metal superplasticity of fine-grained Y2O3- stabilized zirconia ceramics, Philo. Mag. A79 (1999), p. 1591–1608.10.1080/01418619908210381
  • Y. Ikuhara, P. Thavorniti, and T. Sakuma, Solute segregation at grain boundaries in superplastic SiO2 doped TZP, Acta Mater. 45 (1992), pp. 5275–5284.
  • H. Yoshida, K. Okada, Y. Ikuhara, and T. Sakuma, Improvement of high-temperature creep resistance in fine-grained Al2O3 by Zr4+ segregation in grain boundaries, Philo. Mag. Lett. 76 (1997), pp. 9–14.10.1080/095008397179327
  • H. Somekawa and T. Mukai, Molecular dynamics simulation of grain boundary plasiticty in magnesium and solid-solution magnesium alloys, Comp. Mater. Sci. 77 (2013), pp. 424–429.10.1016/j.commatsci.2013.04.043
  • H. Somekawa and T. Mukai, Effect of grain boundary structures on grain boundary sliding in magnesium, Mater. Lett. 76 (2012), pp. 32–35.10.1016/j.matlet.2012.02.010
  • N. Stanford, J.R. TerBush, M. Serry, and M.R. Barnett, Grain refinement of an extruded Mg alloy via Na microalloying, Metal. Mater. Trans. 44A (2013), pp. 2466–2469.10.1007/s11661-013-1712-0
  • F.R. Elsayed, T.T. Sasaki, T. Okubo, H. Takahashi, S.W. Xu, S. Kamado, and K. Hono, Effect of extension conditions on microstructure and mechanical properties of microalloyed Mg–Sn–Al–Zn alloys, Mater. Sci. Eng. A 588 (2013), p. 318–328.10.1016/j.msea.2013.09.050
  • A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater. 49 (2001), pp. 1199–1207. 10.1016/S1359-6454(01)00020-9
  • S.E. Ion, F.J. Humphreys, and S.H. White, Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium, Acta Metall. 30 (1982), pp. 1909–1920.10.1016/0001-6160(82)90031-1
  • J.C. Tan and M.J. Tan, Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet, Mater. Sci. Eng. A 339 (2003), pp. 124–132.10.1016/S0921-5093(02)00096-5
  • X. Yang, H. Miura, and T. Sakai, Continuous dynamic recrystallization in a superplastic 7075 Aluminum alloy, Mater. Trans. 43 (2002), p. 2400–2407.
  • T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev, High strain rate superplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy, Acta Mater. 46 (1998), pp. 2789–2800. 10.1016/S1359-6454(97)00452-7
  • T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure, Scripta Mater. 45 (2001), pp. 89–94.10.1016/S1359-6462(01)00996-4
  • S.R. Agnew, J.A. Horton, T.M. Lillo, and D.W. Brown, Enhanced ductility in strongly textured magnesium produced by equal-channel angular pressing, Scripta Mater. 50 (2004), pp. 377–381.10.1016/j.scriptamat.2003.10.006
  • J. Hirsch and T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for auto motive applications, Acta Mater. 61 (2013), pp. 818–843.10.1016/j.actamat.2012.10.044
  • H. Somekawa, T. Inoue, and K. Tsuzaki, Effect of solute atoms on fracture toughness in dilute magnesium alloys, Philo. Mag. 93 (2013), pp. 4582–4592. 10.1080/14786435.2013.838008
  • J. Pilling and N. Ridley, Effect of hydrostatic pressure on cavitation in superplastic aluminum alloys, Acta Metall. 34 (1986), pp. 669–679. 10.1016/0001-6160(86)90182-3
  • A.H. Chokshi and T.G. Langdon, A model for diffusional cavity growth in superplasticity, Acta Metall. 35 (1987), pp. 1089–1101. 10.1016/0001-6160(87)90056-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.