471
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Directional Young’s modulus of single-crystal and cold-rolled titanium from ab initio calculations: Preferred crystal orientation due to cold rolling

, , , , &
Pages 2736-2751 | Received 30 Dec 2015, Accepted 08 Jul 2016, Published online: 28 Jul 2016

References

  • I.G. Zakharchenko and A.E. Bryukhanov, Anisotropy of young’s modulus of cold-rolled titanium, Soviet Phys. J. 11 (1968), pp. 24–29.
  • F. Jona and P.M. Marcus, First-principles study of the pressure-induced α→ω transition in titanium, Phys. Status Solidi B 242 (2005), pp. 3077–3084.
  • C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinheim, 2003.
  • Mitsuo and Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behav. Biomed. Mater. 1 (2008), pp. 30–42.
  • P.K. Moy, S. Lundgren, J. Beumer, and D. Castro, Stabilization of craniofacial prostheses using osseointegrated titanium implants, Laryngoscope 103 (1993), pp. 1399–1405.
  • P. Majumdar, S. Singh, and M. Chakraborty, Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques-a comparative study, Mater. Sci. Eng. A 489 (2008), pp. 419–425.
  • C. Elias, J. Lima, R. Valiev, and M. Meyers, Biomedical applications of titanium and its alloys, JOM J. Minerals Metals Mater. Soc. 60 (2008), pp. 46–49.
  • G. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1961.
  • Y. Chun, S. Yu, S. Semiatin, and S. Hwang, Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium, Mater. Sci. Eng. A 398 (2005), pp. 209–219.
  • A.A. Salem, S.R. Kalidindi, and R.D. Doherty, Strain hardening of titanium: role of deformation twinning, Acta Mater. 51 (2003), pp. 4225–4237.
  • S. Malysheva, G. Salishchev, and E. Yakushina, Effect of cold rolling on the structure and mechanical properties of sheets from commercial titanium, Metal Sci. Heat Treat. 50 (2008), pp. 180–186.
  • U.F. Kocks, C.N. Tomé and H.R. Wenk, Texture and Anisotropy, Cambridge University Press, Cambridge, 1998.
  • H. Matsumoto, A. Chiba, and S. Hanada, Anisotropy of Young’s modulus and tensile properties in cold rolled α´ martensite Ti-V-Sn alloys, Mater. Sci. Eng. A 486 (2008), pp. 503–510.
  • A. Zarkades and F. Larson, Elasticity of Titanium Sheet Alloys in The Science Technology and Application of Titanium, R.I. Jaffeen and E. Promisel, eds., Pergamon, Oxford, 1970, pp. 933–941.
  • Y.B. Chun, M. Battaini, C.H.J. Davies, and S.K. Hwang, Distribution characteristics of in-grain misorientation axes in cold-rolled commercially pure titanium and their correlation with active slip modes, Metallurgial Mater. Trans. A 41A (2010), pp. 3473–3487.
  • H. Wang, P.D. Wu, J. Wang, C.N. Tom\’{e}, A crystal plasticity model for hexagonal packed (HCP) crystals including twinning and de-twinning mechanisms, Int. J. Plast. 26 (2013), pp. 523–532.
  • N.P. Gurao and S. Suwas, Evolution of crystallographic texture during deformation of sub micron grain size titanium, J. Mater. Res. 26 (2011), pp. 36–52.
  • Z. Zeng, S. Jonsson, and H.J. Roven, The effects of deformation conditions on microstructure and texture of commercially pure Ti, Acta Materialia 57 (2009), pp. 5822–5833.
  • W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004), pp. 3–20.
  • A.D. McQuillan and M.K. McQuillan, Titanium/by A.D. McQuillan and M.K. McQuillan, Butterworths Scientific, London, 1956.
  • P. Soven, Coherent-potential model of substitutional disordered alloys, Phys. Rev. 156 (1967), pp. 809–813.
  • B.L. Györffy, Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys, Phys. Rev. B 5 (1972), pp. 2382–2384.
  • H.R. Wenk, G. Canova, Y. Brechet, and L. Flandin, A deformation-based model for recrystallisation of anisotroic materials, Acta Materialia 45 (1997), pp. 3283–3296.
  • P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964), pp. B864–B871.
  • W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), pp. A1133–A1138.
  • L. Vitos, I.A. Abrikosov, and B. Johansson, Anisotropic lattice distortions in random alloys from first-principles theory, Phys. Rev. Lett. 87 (2001), pp. 156401-1–156401-4.
  • L. Vitos, Computational quantum mechanics for materials engineers: The EMTO method and applications, in Engineering Materials and Processes Series, Springer-Verlag, London, 2007.
  • J.N. Andersen, D. Hennig, E. Lundgren, M. Methfessel, R. Nyholm, and M. Scheffler, Surface core-level shifts of some 4d-metal single-crystal surfaces: Experiments and ab-initio calculations, Phys. Rev. B 50 (1994), pp. 17525–17534.
  • O.K. Andersen, O. Jepsen, and G. Krier, Exact Muffin-Tin Orbital Theory, in Lectures on Methods of Electronic Structure Calculations, V. Kumar, O.K. Andersen, and A. Mookerjee, eds., World Scientific Publishing Co., Singapore, 1994, pp. 63–124.
  • L. Vitos, Total-energy method based on the exact muffin-tin orbitals theory, Phys. Rev. B 64 (2001), pp. 014107-1–014107-11.
  • L. Vitos, H.L. Skriver, B. Johansson, and J. Kollár, Application of the exact muffin-tin orbitals theory: the spherical cell approximation, Comput. Mat. Sci. 18 (2000), pp. 24–38.
  • M. Zwierzycki and O.K. Andersen, The overlapping muffin-tin approximation, Acta Phys. Pol. A 115 (2009), pp. 64–68.
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008), pp. 136406-1–136406-4.
  • G.I. Csonka, J.P. Perdew, A. Ruzsinszky, P.H.T. Philipsen, S. Lebegue, J. Paier, O.A. Vydrov, and J.G. Angyan, Assessing the performance of recent density functionals for bulk solids, Phys. Rev. B 79 (2009), pp. 155107-1–14.
  • M. Ropo, K. Kokko, and L. Vitos, Assessing the Perdew-Burke-Ernzerhof exchange-correlation density functional revised for metallic bulk and surface systems, Phys. Rev. B 77 (2008), pp. 195445-1–6.
  • P. Haas, F. Tran, and P. Blaha, Calculation of the lattice constant of solids with semilocal functionals, Phys. Rev. B 79 (2009), pp. 085104-1–10.
  • G. Grimvall, Thermophysical Properties of Materials, North-Holland, Amsterdam, 1986.
  • V.L. Moruzzi, J.F. Janak, and K. Schwarz, Calculated thermal properties of metals, Phys. Rev. B 37 (1988), pp. 790–799.
  • I.A. Abrikosov, A.V. Ruban, D.Y. Kats, and Y.H. Vekilov, Electronic structure, thermodynamic and thermal properties of Ni-Al disordered alloys from LMTO-CPA-DFT calculations, J. Phys.: Condens. Matter 5 (1993), pp. 1271–1290.
  • K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier, Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals, Crit. Rev. Solid State Mater. Sci. 39 (2014), pp. 1–24.
  • M.J. Mehl and D.A. Papaconstantopoulos, Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals, Phys. Rev. B 54 (1996), pp. 4519–4530.
  • G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook [by] Gene Simmons and Herbert Wang, 2nd ed., MIT Press, Cambridge, 1971.
  • Pearson, Handbook of Lattice Spacing and Structures of Metals, Pergamon Press, London, 1958.
  • A. Kelly and G. Groves, Crystallography and Crystal Defects, Longmans, London, 1970.
  • V.A. Lubarta and M.C. Chen, On the elastic moduli and compliances of transversely isotropic and orthotropic materials, J. Mech. Mater. Struct. 3 (2008), pp. 153–171.
  • T.C.T. Ting and T. Chen, Poisson’s ratio for anisotropic elastic materials can have no bounds, Q. J. Mech. Appl. Math. 58 (2005), pp. 73–82.
  • J.W. Flowers Jr, K.C. O’Brien, and P.C. McEleney, Elastic constants of alpha-titanium single crystals at 25°C, J. Less Common Met. 7 (1964), pp. 393–395.
  • J.M. Zhang, Y. Zhang, K.W. Xu, and V. Ji, Anisotropic elasticity in hexagonal crystals, Thin Solid Films 515 (2007), pp. 7020–7024.
  • N. Bozzolo, N. Dewobroto, H. Wenk, and F. Wagner, Microstructure and microtexture of highly cold-rolled commercially pure titanium, J. Mater. Sci. 42 (2007), pp. 2405–2416.
  • W.L. Roberts, Cold Rolling of Steel, Marcel Dekker Inc., New York, 1978.
  • D.R. Trinkle, M.D. Jones, R.G. Hennig, S.P. Rudin, R.C. Albers, and J.W. Wilkins, Empirical tight-binding model for titanium phase transformations, Phys. Rev. B 73 (2006), pp. 094123-1–9.
  • C.S. Man and M. Huang, A simple explicit formula for the Voigt-Reuss-Hill average of elastic polycrystals with arbitrary crystal and texture symmetries, J. Elast. 105 (2011), pp. 29–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.