593
Views
26
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On the homogeneous nucleation and propagation of dislocations under shock compression

&
Pages 2752-2778 | Received 05 May 2016, Accepted 07 Jul 2016, Published online: 03 Aug 2016

References

  • M.A. Shehadeh, Multiscale dislocation dynamics simulations of shock-induced plasticity in small volumes, Philos. Mag. 92 (2012), pp. 1173–1197.10.1080/14786435.2011.637988
  • J.W. Edington, The influence of strain rate on the mechanical properties and dislocation substructure in deformed copper single crystals, Philos. Mag. 19 (1969), pp. 1189–1206.10.1080/14786436908228644
  • N.J. Wadsworth and J. Hutchings, The dependence on temperature and strain rate of the flow stress of cyclically hardened copper single crystals, Philos. Mag. 10 (1964), pp. 195–217.10.1080/14786436408225658
  • P.S. Follansbee and U.F. Kocks, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metall. 36 (1988), pp. 81–93.10.1016/0001-6160(88)90030-2
  • P.S. Follansbee and G.T. Gray III, Dynamic deformation of shock prestrained copper, Mater. Sci. Eng. A 138 (1991), pp. 23–31.10.1016/0921-5093(91)90673-B
  • M.S. Schneider, B. Kad, D.H. Kalantar, B.A. Remington, E. Kenik, H. Jarmakani, and M.A. Meyers, Laser shock compression of copper and copper–aluminum alloys, Int. J. Impact Eng. 32 (2005), pp. 473–507.10.1016/j.ijimpeng.2005.05.010
  • A.B. Tanner, R.D. McGinty, and D.L. McDowell, Modeling temperature and strain rate history effects in OFHC Cu, Int. J. Plast. 15 (1999), pp. 575–603.10.1016/S0749-6419(98)00062-X
  • J.W. Swegle and D.E. Grady, Shock viscosity and the prediction of shock rise times, J. Appl. Phys. 58 (1985), pp. 692–701.10.1063/1.336184
  • D.E. Grady, Structured shock waves and the fourth-power law, J. Appl. Phys. 107 (2010), p. 013506.10.1063/1.3269720
  • A.M. Podurets, M.I. Tkachenko, O.N. Ignatova, A.I. Lebedev, V.V. Igonin, and V.A. Raevskii, Dislocation density in copper and tantalum subjected to shock compression depending on loading parameters and original microstructure, Phys. Met. Metall. 114 (2013), pp. 440–447.10.1134/S0031918X13050074
  • W.J. Murphy, A. Higginbotham, G. Kimminau, B. Barbrel, E.M. Bringa, J. Hawreliak, R. Kodama, M. Koenig, W. McBarron, M.A. Meyers, B. Nagler, N. Ozaki, N. Park, B. Remington, S. Rothman, S.M. Vinko, T. Whitcher, and J.S. Wark, The strength of single crystal copper under uniaxial shock compression at 100 GPa, J. Phys.: Condens. Matter 22 (2010), p. 065404.
  • D. Milathianaki, S. Boutet, G.J. Williams, A. Higginbotham, D. Ratner, A.E. Gleason, M. Messerschmidt, M.M. Seibert, D.C. Swift, P. Hering, J. Robinson, W.E. White, and J.S. Wark, Femtosecond visualization of lattice dynamics in shock-compressed matter, Science 342 (2013), pp. 220–223.10.1126/science.1239566
  • J.C. Crowhurst, M.R. Armstrong, K.B. Knight, J.M. Zaug, and E.M. Behymer, Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold, Phys. Rev. Lett. 107 (2011), p. 144302.10.1103/PhysRevLett.107.144302
  • C.S. Smith, Metallographic studies of metals after explosive shock, Trans. Metall. Soc. AIME. 212 (1958) pp. 574–589.
  • J. Weertman, Moving dislocations in a shock front, in Shock-wave and High Strain Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, 1981, pp. 469–486.
  • M.A. Meyers, A mechanism for dislocation generation in shock-wave deformation, Scr. Metall. 12 (1978), pp. 21–26.10.1016/0036-9748(78)90219-3
  • R.W. Armstrong, W. Arnold, and F.J. Zerilli, Dislocation mechanics of shock-induced plasticity, Metall. Mater. Trans. A 38 (2007), pp. 2605–2610.10.1007/s11661-007-9142-5
  • R.W. Armstrong and S.M. Walley, High strain rate properties of metals and alloys, Int. Mater. Rev. 53 (2008), pp. 105–128.10.1179/174328008X277795
  • R.W. Armstrong, W. Arnold, and F.J. Zerilli, Dislocation mechanics of copper and iron in high rate deformation tests, J. Appl. Phys. 105 (2009), pp. 1–7.
  • R.W. Armstrong and F.J. Zerilli, High rate straining of tantalum and copper, J. Phys. D: Appl. Phys. 43 (2010), p. 492002.10.1088/0022-3727/43/49/492002
  • G.A. Malygin, S.L. Ogarkov, and A.V. Andriyash, On the power-law pressure dependence of the plastic strain rate of crystals under intense shock wave loading, Phys. Solid State 55 (2013), pp. 780–786.10.1134/S1063783413040197
  • V.S. Krasnikov, A.Y. Kuksin, A.E. Mayer, and A.V. Yanilkin, Plastic deformation under high-rate loading: The multiscale approach, Phys. Solid State 52 (2010), pp. 1386–1396.10.1134/S1063783410070115
  • V.S. Krasnikov, A.E. Mayer, and A.P. Yalovets, Dislocation based high-rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations, Int. J. Plast. 27 (2011), pp. 1294–1308.10.1016/j.ijplas.2011.02.008
  • R.A. Austin and D.L. McDowell, A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates, Int. J. Plast. 27 (2011), pp. 1–24.10.1016/j.ijplas.2010.03.002
  • R.A. Austin and D.L. McDowell, Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum, Int. J. Plast. 32–33 (2012), pp. 134–154.10.1016/j.ijplas.2011.11.002
  • N.N. Barton, J.V. Bernier, R. Becker, A. Arsenlis, R. Cavallo, J. Marian, M. Rhee, H.S. Park, B.A. Remington, and R.T. Olson, A multiscale strength model for extreme loading conditions, J. Appl. Phys. 109 (2011), p. 073501.10.1063/1.3553718
  • J.D. Clayton, Analysis of shock compression of strong single crystals with logarithmic thermoelastic-plastic theory, Int. J. Eng Sci. 79 (2014), pp. 1–20.10.1016/j.ijengsci.2014.02.016
  • J.T. Lloyd, J.D. Clayton, R. Becker, and D.L. McDowell, Simulation of shock wave propagation in single crystal and polycrystalline aluminum, Int. J. Plast. 60 (2014) pp. 118–144.10.1016/j.ijplas.2014.04.012
  • L. Holian and P.S. Lomdahl, Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations, Science 280 (1998), pp. 2085–2088.10.1126/science.280.5372.2085
  • T.C. Germann, D. Tanguy, B. Holian, P.S. Lomdhal, M. Mareschal, and R. Ravelo, Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results, Metall. Mater. Trans. A 35 (2004), pp. 2609–2615.10.1007/s11661-004-0206-5
  • D. Tanguy, M. Mareschal, P.S. Lomdahl, and B.L. Holian, T.C. Germann, and R. Ravelo, Dislocation nucleation induced by a shock wave in a perfect crystal: Molecular dynamics simulations and elastic calculations, Phys. Rev. B 68 (2003), p. 144111.10.1103/PhysRevB.68.144111
  • D. Tanguy, M. Mareschal, T.C. Germann, B.L. Holian, P.S. Lomdahl, and R. Ravelo, Plasticity induced by a shock wave: Large scale molecular dynamics simulations, Mater. Sci. Eng. A 387–389 (2004), pp. 262–265.10.1016/j.msea.2004.02.088
  • E.M. Bringa, J.U. Cazamias, P. Erhart, J. Stölken, N. Tanushev, B.D. Wirth, R.E. Rudd, and M.J. Caturla, Atomistic shock Hugoniot simulation of single-crystal copper, J. Appl. Phys. 96 (2004), pp. 3793–3799.10.1063/1.1789266
  • E.M. Bringa, K. Rosonlankova, R.E. Rudd, B.A. Remington, J.S. Wark, M. Duchaineau, D.H. Kalantar, J. Hawreliak, and J. Belak, Shock deformation of face-centred-cubic metals on subnanosecond timescales, Nat. Mater. 5 (2006), pp. 805–809.10.1038/nmat1735
  • V. Dupont and T.C. Germann, Strain rate and orientation dependencies of the strength of single crystalline copper under compression, Phys. Rev. B 86 (2012), p. 134111.10.1103/PhysRevB.86.134111
  • B.A. Remington, G. Bazan, J. Belak, E. Bringa, J.D. Colvin, M.J. Edwards, S.G. Glendinning, D.H. Kalantar, M. Kumar, B.F. Lasinski, K.T. Lorenz, J.M. McNaney, S.M. Pollaine, D. Rowley, J.S. Stölken, S.V. Weber, W.G. Wolfer, M. Caturla, D.S. Ivanov, L.V. Zhigilei, B. Kad, M.A. Meyers, M. Schneider, D.D. Meyerhofer, B. Yaakobi, and J.S. Wark, Materials science under extreme conditions of pressure and strain rate, Metall. Mater. Trans. A 35 (2004), pp. 2587–2607.10.1007/s11661-004-0205-6
  • B.A. Remington, S.W. Pollaine, K. Rosolankova, B. Sadik, M.S. Schneider, D. Swift, J. Wark, B. Yaakobi, P. Allen, E.M. Bringa, J. Hawreliak, D. Ho, K.T. Lorenz, H. Lorenzana, J.M. McNaney, and M.A. Meyers, Material dynamics under extreme conditions of pressure and strain rate, Mater. Sci. Technol. 22 (2006), pp. 474–488.10.1179/174328406X91069
  • R.E. Rudd, A.J. Comley, J. Hawreliak, H. Park, B. Maddox, B.A. Remington, Theory and simulation of 1D to 3D plastic relaxation in tantalum, AIP Conference Proceedings, Chicago, IL, 2011.
  • M.A. Shehadeh, H.M. Zbib, and T.D. de la Rubia, Multiscale dislocation dynamics simulations of shock compression in copper single crystal, Int. J. Plast. 21 (2005), pp. 2369–2390.10.1016/j.ijplas.2004.12.004
  • M.A. Shehadeh, H.M. Zbib, and T.D. de la Rubia, Modelling the dynamic deformation and patterning in fcc single crystals at high strain rates: Dislocation dynamics plasticity analysis, Philos. Mag. 85 (2005), pp. 1667–1685.10.1080/14786430500036470
  • M.A. Shehadeh, E.M. Bringa, H.M. Zbib, J.M. McNaney, and B.A. Remington, Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleation, Appl. Phys. Lett. 89 (2006), p. 171918.10.1063/1.2364853
  • M. Shehadeh, Modeling shock induced plasticity in copper single crystal: Numerical and strain localization issues, Adv. Mater. Res. 324 (2011), pp. 193–196.10.4028/www.scientific.net/AMR.324
  • B.L. Hansen, I.J. Beyerlein, C.A. Bronkhorst, E.K. Cerreta, and D. Dennis-Koller, A dislocation-based multi-rate single crystal plasticity model, Int. J. Plast. 44 (2013), pp. 129–146.10.1016/j.ijplas.2012.12.006
  • J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York, 1982.
  • S. Ryu, K. Kang, and W. Cai, Entropic effect on the rate of dislocation nucleation, Proc. Nat. Acad. Sci. 108 (2011), pp. 5174–5178.10.1073/pnas.1017171108
  • R.J. Asaro and S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins, Acta Mater. 53 (2005), pp. 3369–3382.10.1016/j.actamat.2005.03.047
  • Y.L. Chui and A.H.W. Ngan, Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal, Acta. Metall. 50 (2002), pp. 1599–1611.
  • G.E. Beltz and L.B. Freund, On the nucleation of dislocations at a crystal surface, Phys. Status Solidi B 180 (1993), pp. 303–313.10.1002/(ISSN)1521-3951
  • T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Temperature and strain-rate dependence of surface dislocation nucleation, Phys. Rev. Lett. 100 (2008), p. 025502.10.1103/PhysRevLett.100.025502
  • C. Weinberger, A. Jennings, K. Kang, and J. Greer, Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires, J. Mech. Phys. Solids 60 (2012), pp. 84–103.10.1016/j.jmps.2011.09.010
  • J.P. Hirth, H.M. Zbib, and J. Lothe, Forces on high velocity dislocations, Modell. Simul. Mater. Sci. Eng. 6 (1998), pp. 165–169.10.1088/0965-0393/6/2/006
  • J. Weertman, High velocity dislocations in response of metals to high velocity deformation, in Response of Metals to High Velocity Deformation, Metallurgical Society Conferences, P.G. Shewmon and V.F.G. Zackay eds., Interscience, New York, 1961, pp. 205–247.
  • H.M. Zbib and T.D. de la Rubia, A multiscale model of plasticity, Int. J. Plast. 18 (2002), pp. 1133–1163.10.1016/S0749-6419(01)00044-4
  • T.W. Wright, The Physics and Mathematics of Adiabatic Shear Bands, Cambridge University Press, Cambridge, 2002.
  • J.D. Clayton, Nonlinear Mechanics of Crystals, Springer, Dordrecht, 2011.10.1007/978-94-007-0350-6
  • D. Hayes, R.S. Hixson, and R.G. McQueen, High pressure elastic properties, solid-liquid phase boundary and liquid equation of state from release wave measurement in shock loaded copper, in Shock Compression of Condensed Matter, M.D. Furnish, L.C. Chhbildas, and R.S. Hixson, eds., American Institute of Physics, Melville, 1999, p. 483–488.
  • S. Aubry, K. Kang, S. Ryu, and W. Cai, Energy barrier for homogeneous dislocation nucleation: Comparing atomistic and continuum models, Scr. Mater. 64 (2011), pp. 1043–1046.10.1016/j.scriptamat.2011.02.023
  • A. Jennings, C. Weinberger, S. Lee, Z. Aitken, L. Meza, and J. Greer, Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions, Acta Mater. 61 (2013), pp. 2244–2259.10.1016/j.actamat.2012.12.044
  • B. Gurrutxaga-Lerma, D.S. Balint, D. Dini, D.E. Eakins, A.P. Sutton, A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading, Proc. R. Soc. A: Math. Phys. Eng. Sci. 469 (2013) p. 20130141.10.1098/rspa.2013.0141
  • R.W. Armstrong, Thermal activation strain rate analysis (TASRA) for polycrystalline metals, (Indian), J. Sci. Indust. Res. 32 (1973), pp. 591–602.
  • R.W. Armstrong and Q. Li, Dislocation mechanic of strain rate deformation, Metall. Mater. Trans. A 46 (2015), pp. 4438–4453.10.1007/s11661-015-2779-6
  • M.A. Tschopp and D.L. McDowell, Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading, J. Mech. Phys. Solids 56 (2008), pp. 1806–1830.10.1016/j.jmps.2007.11.012
  • B.Y. Cao, E.M. Bringa, and M.A. Meyers, Shock compression of monocrystalline copper: Atomistic simulations, Metall. Mater. Trans. A 38 (2007), pp. 2681–2688.10.1007/s11661-007-9248-9
  • G. Kimminau, P. Erhart, E.M. Bringa, B. Remington, and J.S. Wark, Phonon instabilities in uniaxially compressed fcc metals as seen in molecular dynamics simulations, Phys. Rev. B 81 (2010), p. 092102.10.1103/PhysRevB.81.092102
  • T.C. Germann, D. Tanguy, B. Holian, and P.S. Lomdhal, Orientation dependence in molecular dynamics simulations of shocked single crystals, Phys. Rev. Lett. 84 (2000), pp. 5351–5354.10.1103/PhysRevLett.84.5351
  • A. Rohatgi, K.S. Vecchio, The variation of dislocation density as a function of the stacking fault energy in shock-deformed FCC materials, Mater. Sci. Eng. 328 (2002), pp. 256–266.
  • L.E. Murr, Residual microstructure – Mechanical property relationships in shock-loaded metals and alloys, in Shock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum, New York, 1981, pp. 607–673.
  • J.C. Millett, N.K. Bourne, and Z. Rosenberg, Shear stress measurements in copper, iron, and mild steel under shock loading conditions, J. Appl. Phys. 81 (1997), pp. 2579–2583.10.1063/1.363967
  • D.C. Wallace, Irreversible thermodynamics of flow in solids, Phys. Rev. B 22 (1980), pp. 1477–1486.10.1103/PhysRevB.22.1477
  • D.J. Luscher, C.A. Bronkhorst, C.N. Alleman, and F.L. Addessio, A model for finite-deformation nonlinear thermo-mechanical response of single crystal copper under shock conditions, J. Mech. Phys. Solids 61 (2013), pp. 1877–1894.10.1016/j.jmps.2013.05.002
  • M.A. Meyers, F. Gregori, B.K. Kad, M.S. Schneider, D.H. Kalantar, B.A. Remington, G. Ravichandran, T. Boehly, and J.S. Wark, Laser-induced shock compression of monocrystalline copper: Characterization and analysis, Acta Mater. 51 (2003) pp. 1211–1228.10.1016/S1359-6454(02)00420-2
  • A.M. Podurets, M.I. Tkachenko, O.N. Ignatova, A.I. Lebedev, V.V. Igonin, and V.A. Raevskii, Dislocation density in copper and tantalum subjected to shock compression depending on loading parameters and original microstructure, Phys. Met. Metall. 114 (2013), pp. 440–447.10.1134/S0031918X13050074
  • M. Kattoura and M.A. Shehadeh, On the ultra-high-strain rate shock deformation in copper single crystals: Multiscale dislocation dynamics simulations, Philos. Mag. Lett. 94 (2014) pp. 415–423.10.1080/09500839.2014.920540

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.