473
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Climb via vacancy diffusion of edge dislocations in 2D dislocation microstructures

&
Pages 2779-2799 | Received 24 Nov 2015, Accepted 13 Jul 2016, Published online: 05 Aug 2016

References

  • J.J. Meléndez-Martínez, A. Domínguez-Rodríguez, F. Monteverde, C. Melandri, and G. de Portu, Characterisation and high temperature mechanical properties of zirconium boride-based materials, J. Eur. Ceram. Soc. 22 (2002), pp. 2543–2549.
  • J.P. Poirier, Creep of Crystals: High-temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge University Press, New York, 1985.
  • D. Caillard and J. Martin, Thermally Activated Mechanisms in Crystal Plasticity, 1st ed., Vol. 8, Elsevier Science, Amsterdam, 2003.
  • J. Weertman, Theory of steady-state creep based on dislocation climb, J. Appl. Phys. 26 (1955), pp. 1213–1217.
  • T.G. Langdon, Grain boundary sliding as a deformation mechanism during creep, Philos. Mag. 22 (1970), pp. 689–700.
  • W. Beere and M.V. Speight, Creep cavitation by vacancy diffusion in plastically deforming solid, Metal Sci. 12 (1978), pp. 172–176.
  • J.R. Matthews and M.W. Finnis, Irradiation creep models -- An overview, J. Nuclear Mater. 159 (1988), pp. 257–285.
  • Y.J. Wang, A. Ishii, and S. Ogata, Transition of creep mechanism in nanocrystalline metals, Phys. Rev. B 84 (2011), p. 224102.
  • Y. Ashkenazy and R.S. Averback, Irradiation induced grain boundary flow -- A new creep mechanism at the nanoscale, Nano Lett. 12 (2012), pp. 4084–4089.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982.
  • J. Friedel, Chapter XI -- Creep, in Dislocations, International Series of Monographs on Solid State Physics, J. Friedel, ed., Addison-Wesley, Reading, MA, 1964, pp. 303–319.
  • E. Clouet, Predicting dislocation climb: Classical modeling versus atomistic simulations, Phys. Rev. B 84 (2011), p. 092106.
  • C. Ayas, J. van Dommelen, and V. Deshpande, Climb-enabled discrete dislocation plasticity, J. Mech. Phys. Solids 62 (2014), pp. 113–136.
  • V. Bulatov, F.F. Abraham, L. Kubin, B. Devincre, and S. Yip, Connecting atomistic and mesoscale simulations of crystal plasticity, Nature 391 (1998), pp. 669–672.
  • N.M. Ghoniem, S.H. Tong, and L.Z. Sun, Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B 61 (2000), pp. 913–927.
  • D. Gómez-García, B. Devincre, and L.P. Kubin, Dislocation patterns and the similitude principle: 2.5D mesoscale simulations, Phys. Rev. Lett. 96 (2006), p. 125503.
  • D. Mordehai, E. Clouet, M. Fivel, and M. Verdier, Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics, Philos. Mag. 88 (2008), pp. 899–925.
  • B. Bakó, E. Clouet, L.M. Dupuy, and M. Blétry, Dislocation dynamics simulations with climb: Kinetics of dislocation loop coarsening controlled by bulk diffusion, Philos. Mag. 91 (2011), pp. 3173–3191.
  • S.M. Keralavarma, T. Cagin, A. Arsenlis, and A.A. Benzerga, Power-law creep from discrete dislocation dynamics, Phys. Rev. Lett. 109 (2012), p. 265504.
  • S.M. Keralavarma and A.A. Benzerga, High-temperature discrete dislocation plasticity, J. Mech. Phys. Solids 82 (2015), pp. 1–22.
  • M. Verdier, M.C. Fivel, and I. Groma, Mesoscopic scale simulation of dislocation dynamics in fcc metals: Principles and applications, Model. Simul. Mater. Sci. Eng. 6 (1998), pp. 755–770.
  • M.G.D. Geers, M. Cottura, B. Appolaire, E.P. Busso, S. Forest, and A. Villani, Coupled glide-climb diffusion-enhanced crystal plasticity, J. Mech. Phys. Solids 70 (2014), pp. 136–153.
  • D. Mordehai and G. Martin, Enhanced annealing of the dislocation network under irradiation, Phys. Rev. B 84 (2011), p. 014115.
  • F. Boioli, P. Carrez, P. Cordier, B. Devincre, and M. Marquille, Modeling the creep properties of olivine by 2.5-dimensional dislocation dynamics simulations, Phys. Rev. B 92 (2015), p. 014115.
  • Z. Shen, R. Wagoner, and W. Clark, Dislocation pile-up and grain boundary interactions in 304 stainless steel, Scr. Metall. 20 (1986), pp. 921–926.
  • H. Yang, M. Huang, and Z. Li, The influence of vacancies diffusion-induced dislocation climb on the creep and plasticity behaviors of nickel-based single crystal superalloy, Comput. Mater. Sci. 99 (2015), pp. 348–360.
  • E.M. Francis, B.M.B. Grant, J.Q. da Fonseca, P.J. Phillips, M.J. Mills, M.R. Daymond, and M. Preuss, High-temperature deformation mechanisms in a polycrystalline nickel-base superalloy studied by neutron diffraction and electron microscopy, Acta Mater. 74 (2014), pp. 18–29.
  • N.V. Doan and G. Martin, Elimination of irradiation point defects in crystalline solids: Sink strengths, Phys. Rev. B 67 (2003), p. 134107.
  • P.A. Geslin, B. Appolaire, and A. Finel, A phase field model for dislocation climb, Appl. Phys. Lett. 104 (2014), p. 011903.
  • J.H. Ke, A. Boyne, Y. Wang, and C.R. Kao, Phase field microelasticity model of dislocation climb: Methodology and applications, Acta Mater. 79 (2014), pp. 396–410.
  • A.H. Duparc, C. Moingeon, N.S. de Grande, and A. Barbu, Microstructure modelling of ferritic alloys under high flux 1 mev electron irradiations, J. Nuclear Mater. 302 (2002), pp. 143–155.
  • R.A. Lebensohn, C.S. Hartley, C.N. Tomé, and O. Castelnau, Modeling the mechanical response of polycrystals deforming by climb and glide, Philos. Mag. 90 (2010), pp. 567–583.
  • A. Vattre, T. Jourdan, H. Ding, M.C. Marinica, and M. Demkowicz, Non-random walk diffusion enhances the sink strength of semicoherent interfaces, Nat. Commun. 7 (2016), p. 10424.
  • Y. Gu, Y. Xiang, S.S. Quek, and D.J. Srolovitz, Three-dimensional formulation of dislocation climb, J. Mech. Phys. Solids 83 (2015), pp. 319–337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.