173
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

SCES2016 Summary: experiment

Pages 3517-3526 | Received 09 Jun 2016, Accepted 18 Jul 2016, Published online: 03 Aug 2016

References

  • M. Dzero, J. Xia, V. Galitski, and P. Coleman, Topological Kondo insulators, Annu. Rev. Condens. Matter Phys. 7 (2016), pp. 249–280.10.1146/annurev-conmatphys-031214-014749
  • P.W. Anderson, Theoretical and experimental aspects of valence fluctuations and heavy fermions, in Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions, L.C. Gupta and S.K. Malik eds., Plenum Press, New York, 1987, p. 9.10.1007/978-1-4613-0947-5
  • E. Fradkin, S.A. Kivelson, and J.M. Tranquada, Colloquium: Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87 (2015), pp. 457–582.10.1103/RevModPhys.87.457
  • D.J. Scalapino, A common thread: The pairing interaction for unconventional superconductors, Rev. Mod. Phys. 84 (2012), pp. 1383–1417.10.1103/RevModPhys.84.1383
  • J.M. Bok, J.J. Bae, H.-Y. Choi, C.M. Varma, W. Zhang, J. He, Y. Zhang, L. Yu, and X.J. Zhou, Quantitative determination of pairing interactions for high temperature superconductivity in cuprates, Sci. Adv. 2 (2016), p. e1501329.10.1126/sciadv.1501329
  • X.J. Zhou, Quantitative determination of pairing interactions for high temperature superconductivity in cuprates, SCES2016, Hangzhou, China, 2016.
  • H. Oike, K. Miyagawa, H. Taniguchi, and J. Kanoda, Pressure-induced Mott transition in an organic superconductor with finite doping level, Phys. Rev. Lett. 114 (2015), pp. 067002-1–067002-5. 10.1103/PhysRevLett.114.067002
  • K. Kanoda, Quantum criticality, preformed pairs and spin liquids emerging near Mott transition in quasi-triangular-lattice organics, SCES2016, Hangzhou, China, 2016.
  • S. Friedemann, H. Chang, M.B. Gamza, P. Reiss, X. Chen, P. Alireza, W.A. Coniglio, D. Graf, S. Tozer, and F.M. Grosche, Large Fermi surface of heavy electrons at the border of Mott insulating state in NiS2. Available at https://arxiv.org/ftp/arxiv/papers/1509/1509.00397.pdf.
  • S. Freidemann, H. Chang, M. Gamza, W. Coniglio, S. Tozer, and M. Grosche, Heavy electrons at the Mott transition in NiS2, SCES2016, Hangzhou, China, 2016.
  • W.F. Brinkman and T.M. Rice, Application of Gutzwiller’s variational method to the metal-insulator transition, Phys. Rev. B 2 (1970), pp. 4301–4304.
  • B. Hartmann, D. Zielke, J. Polzin, T. Sasaki, and J. Müller, Critical Slowing down of the charge carrier dynamics at the Mott metal-insulator transition, Phys. Rev. Lett. 114 (2015), pp. 216403-1–216403-5. 10.1103/PhysRevLett.114.216403
  • B. Hartmann, D. Zielke, J. Polzin, T. Sasaki, and J. Muller, Critical slowing down of the charge carrier dynamics at the Mott metal-insulator transition in molecular conductors, SCES2016, Hangzhou, China, 2016.
  • F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schafer, Superconductivity in the presence of strong Pauli paramagnetism, Phys. Rev. Lett. 43 (1979), pp. 1892–1896.10.1103/PhysRevLett.43.1892
  • S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, H. Ikeda, and K. Machida, Multiband superconductivity with unexpected deficiency of nodal quasiparticles in CeCu2Si2, Phys. Rev. Lett. 112 (2014), pp. 067002-1–067002-5. 10.1103/PhysRevLett.112.067002
  • O. Stockert, J. Arndt, E. Faulhaber, C. Geibel, H.S. Jeevan, S. Kirchner, M. Loewenhaupt, K. Schmalzl, W. Schmidt, Q. Si, and F. Steglich, Magnetically driven superconductivity in CeCu2Si2, Nat. Phys. 7 (2011), pp. 119–124.10.1038/nphys1852
  • M. Smidman, G.M. Pang, Z.F. Weng, Y. Chen, W.B. Jiang, Y.J. Zhang, J.L. Zhang, L. Jiao, H.S. Jeevan, F. Steglich, and H.Q. Yuan, The superconducting order parameter of the heavy fermion superconductor CeCu2Si2, SCES2016, Hangzhou, China, 2016.
  • G.M. Pang, M. Smidman, J.L. Zhang, L. Jiao, Z.F. Weng, E.M. Nica, Y. Chen, W.B. Jiang, Y.J. Zhang, H.S. Jeevan, P. Gegenwart, F. Steglich, Q. Si, and H.Q. Yuan, Evidence for fully gapped d-wave superconductivity in CeCu2Si2. Available at https://arxiv.org/pdf/1605.04786.pdf.
  • P. Gegenwart, Q. Si, and F. Steglich, Quantum criticality in heavy-fermion metals, Nat. Phys. 4 (2008), pp. 186–197.10.1038/nphys892
  • E. Schuberth, M. Tippmann, L. Steinke, S. Lausberg, A. Steppke, M. Brando, C. Krellner, C. Geibel, R. Yu, Q. Si, and F. Steglich, Emergence of superconductivity in the canonical heavy-electron metal YbRh2Si2, Science 351 (2016), pp. 485–488.10.1126/science.aaa9733
  • F. Steglich, YbRh2Si2 – A new heavy-fermion superconductor, SCES2016, Hangzhou, China, 2016.
  • J.A. Mydosh and P.M. Oppeneer, Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2, Rev. Mod. Phys. 83 (2011), pp. 1301–1322.10.1103/RevModPhys.83.1301
  • H.H. Kung, R.E. Baumbach, E.D. Bauer, V.K. Thorsmolle, W.L. Zhang, K. Haule, J.A. Mydosh, and G. Blumberg, Chirality density wave of the ‘hidden order’ phase in URu2Si2, Science 347 (2015), pp. 1339–1342.10.1126/science.1259729
  • G. Blumberg, H.H. Kung, R. Baumbach, E. Bauer, K. Haule, and J. Mydosh, Chirality density wave of the ‘hidden order’ phase in URu2Si2, SCES2016, Hangzhou, China, 2016.
  • S. Kittaka, Y. Shimizu, T. Sakakibara, Y. Haga, E. Yamamoto, Y. Ōnuki, Y. Tsutsumi, T. Nomoto, H. Ikeda, and K. Machida, Evidence for chiral d-wave superconductivity in URu2Si2 from the field-angle variation of its specific heat, J. Phys. Soc. Jpn. 85 (2016), pp. 033704-1–033704-4. 10.7566/JPSJ.85.033704
  • S. Kittaka, Y. Shimizu, T. Sakakibara, Y. Haga, E. Yamamoto, Y. Onuki, Y. Tsutsumi, T. Nomoto, H. Ikeda, and K. Machida, Nodal gap structure of the heavy-fermiom superconductor URu2Si2 revealed by field-angle specific heat measurements, SCES2016, Hangzhou, China, 2016.
  • E.R. Schemm, R.E. Baumbach, P.H. Tobash, F. Ronning, E.D. Bauer, and A. Kapitulnik, Evidence for broken time-reversal symmetry in the superconducting phase of URu2Si2, Phys. Rev. B 91 (2015), pp. 140506-1–140506-6. 10.1103/PhysRevB.91.140506
  • K. Ishida, M. Manago, Z.Q. Mao, Y. Maeno, and K. Miyake, Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on Sr2RuO4, SCES2016, Hangzhou, China, 2016.
  • M.S. Anwar, R. Ishiguro, Y. Sugimoto, Y.J. Shin, S.J. Kang, Y. Tano, S.R. Lee, S. Yonezawa, H. Takayanagi, T.W. Noh, and Y. Maeno, Proximity effect at the interface between the spin-triplet superconductor Sr2RuO4 and the ferromagnet SrRuO3, SCES2016, Hangzhou, China, 2016.
  • Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, and K. Ishida, Evaluation of spin-triplet superconductivity in Sr2RuO4, J. Phys. Soc. Jpn. 81 (2012), pp. 011009-1–011009-28. 10.1143/JPSJ.81.011009
  • A. Steppke, L. Zhao, M.E. Barber, T. Scaffidi, F. Jerzembeck, H. Rosner, A.S. Gibbs, Y. Maeno, S.H. Simon, A.P. Mackenzie, and W.C. Hicks, Strong peak in Tc of Sr2RuO4 under uniaxial pressure. Available at http://arxiv.org/pdf/1604.06669v1.pdf.
  • A. Schroder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H.v. Lohneysen, E. Bucher, R. Ramazashvili, and P. Coleman, Onset of antiferromagnetism in heavy-fermion metal, Nature 407 (2000), pp. 351–355.
  • H.v. Lohneysen, A. Rosch, M. Vojta, and P. Wolfle, Fermi-liquid instabilities at magnetic quantum phase transition, Rev. Mod. Phys. 79 (2007), pp. 1015–1075.
  • Y. Luo, F. Ronning, N. Wakeham, X. Lu, T. Park, Z.-A. Xu, and J.D. Thompson, Pressure-tuned quantum criticality in the antiferromagnetic Kondo semiconductor CeNi2-δAs2, Proc. Nat. Acad. Sci. 112 (2015), pp. 13520–13524.10.1073/pnas.1509581112
  • H.v. Lohneysen, Entropy landscape of heavy-fermion systems near quantum criticality, SCES2016, Hangzhou, China, 2016.
  • D.G. Mazzone, S. Raymond, J.L. Gavilano, E. Ressouche, C. Niedermayer, J.O. Birk, O. Bachir, G. Lapertot, and M. Kenzlemann, Discovery of a magnetically-driven quantum critical point inside a superconducting phase separating two spin-density waves, SCES2016, Hangzhou, China, 2016.
  • R. Hu, Y. Lee, J. Hudis, V.F. Mitrovic, and C. Petrovic, Composition and field-tuning magnetism and superconductivity in Nd1-xCexCoIn5, Phys. Rev. B 77 (2008), pp. 165129-1–165129-6. 10.1103/PhysRevB.77.165129
  • M. Kenzelmann, Th. Strassle, C. Niedermayer, M. Sigrist, B. Padmanabhan, M. Zolliker, A.D. Bianchi, R. Movshovich, E.D. Bauer, J.L. Sarrao, and J.D. Thompson, Coupled superconducting and magnetic order in CeCoIn5, Science 321 (2008), pp. 1652–1654.10.1126/science.1161818
  • M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo insulators, Phys. Rev. Lett. 104 (2010), pp. 106408-1–106408-4. 10.1103/PhysRevLett.104.106408
  • D.J. Kim, S. Thomas, T. Grant, J. Botimer, Z. Fisk, and J. Xia, Surface Hall effect and nonlocal transport in SmB6: Evidence for surface conduction, Sci. Rep. 3 (2013), pp. 3150-1–3150-4.
  • G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai, C. Tinsman, A. Berkley, S. Wolgast, Y.S. Eo, D.J. Kim, C. Kurdak, J.W. Allen, K. Sun, X.H. Chen, Y.T. Wang, Z. Fisk, and L. Li, Two-dimensional Fermi surfaces in Kondo insulator SmB6, Science 346 (2014), pp. 1208–1212.10.1126/science.1250366
  • B.S. Tan, Y.-T. Hsu, B. Zeng, M.C. Hatnean, N. Harrison, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M.D. Johannes, T.P. Murphy, J.-H. Park, L. Balicas, G.G. Lonzarich, G. Balakrishnan, and S.E. Sebastian, Unconventional Fermi surface in an insulating state, Science 349 (2015), pp. 287–290.10.1126/science.aaa7974
  • J.D. Denlinger, S. Jang, G. Li, L. Chen, B.J. Lawson, T. Asaba, C. Tinsman, F. Yu, K. Sun, J.W. Allen, C. Kurdak, D.J. Kim, Z. Fisk, and L. Li, Consistency of photoemission and quantum oscillations for surface states of SmB6. Available at http://arxiv.org/pdf/1601.07408v1.pdf.
  • J.D. Denlinger, S. Jang, G. Li, K. Sun, J.W. Allen, D.J. Kim, Z. Fisk, and L. Li, Consistency of ARPES and dHvA for surface states of SmB6, SCES2016, Hangzhou, China, 2016.
  • W.T. Fuhman, J. Leiner, P. Nikolic, G. Ganroth, M.B. Stone, M.D. Lumsden, L. DeBeer-Schmitt, P.A. Alekseev, J.-M. Mignot, S.M. Koohpayeh, P. Cottingham, W.A. Phelan, L. Schoop, T.M. McQueen, and C. Broholm, Interaction driven subgap spin exciton in the Kondo insulator SmB6, Phys. Rev. Lett. 114 (2015), pp. 036401-1–036401-5. 10.1103/PhysRevLett.114.036401
  • C. Broholm, Neutron scattering from the Kondo insulator SmB6, SCES2016, Hangzhou, China, 2016.
  • R. Settai, T. Takeuchi, and Y. Ōnuki, Recent advances in Ce-based heavy-Fermion superconductivity and Fermi surface properties, J. Phys. Soc. Jpn. 76 (2007), pp. 051003-1–051003-32. 10.1143/JPSJ.76.051003
  • C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.D. Thompson, Z. Fisk, and P. Monthoux, Heavy-fermion superconductivity in CeCoIn5 at 2.3 K, J. Phys.: Condens. Matter 13 (2001), pp. L337–L342.10.1088/0953-8984/13/17/103
  • Q. Chen, K. Huang, L. Shu, Y.J. Zhang, H. Lee, S. Kirchner, H.Q. Yuan, and D. Feng, Temperature-dependent electronic structure evolution and band-dependent hybridization in CeCoIn5 and CeRhIn5, SCES2016, Hangzhou, China, 2016.
  • T. Yoshida, M. Sigrist, and Y. Yanase, Topological crystalline superconductivity in locally noncentrosymmetric multilayer superconductors, Phys. Rev. Lett. 115 (2015), pp. 027001-1–027001-5. 10.1103/PhysRevLett.115.027001
  • Y. Yanase, A. Daido, T. Yoshida, and T. Watanabe, Topological superconductivity in noncentrosymmetric cuprate and heavy fermion superconductors, SCES2016, Hangzhou, China, 2016.
  • M. Shimozawa, S.K. Goh, T. Shibauchi, and Y. Matsuda, From Kondo lattices to Kondo superlattices. Available at http://arxiv.org/pdf/1601.07003v1.pdf.
  • Y. Matsuda, From Kondo lattices to Kondo superlattices; exploring the interaction between heavy and normal electrons, SCES2016, Hangzhou, China, 2016.
  • M.H. Fischer, T. Neupert, C. Platt, A.P. Schnyder, W. Hanke, J. Gorto, R. Thomale, and M. Sigrist, Chiral d-wave superconductivity in SrPtAs, SCES2016, Hangzhou, China, 2016.
  • S. Lee, X. Zhang, Y. Liang, S. Fackler, J. Yong, X. Wang, J. Paglione, R.L. Greene, and I. Takeuchi, Observation of the superconducting proximity effect in the surface state of SmB6 thin films. Available at https://arxiv.org/ftp/arxiv/papers/1604/1604.07455.pdf.
  • N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotechnol. 8 (2013), pp. 899–911.10.1038/nnano.2013.243
  • E. Ruff, Z. Wang, P. Lunkenheimer, H.-A.K. vonNidda, D. Ehlers, V. Tsurkan, S. Bordacs, I. Kezsmarki, D. Grundler, and A. Loidl, Skyrmions with ferroelectric polaraization in multiferroic GaV4S8, SCES2016, Hangzhou, China, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.