496
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The temperature-dependent dislocation properties of aluminum from the improved Peierls–Nabarro model and first-principles

, &
Pages 2829-2852 | Received 19 Feb 2016, Accepted 19 Jul 2016, Published online: 18 Aug 2016

References

  • F.R.N. Nabarro, Dislocations in Solids: Elastic Theory, Dislocations in Solids Vol. 1, North-Holland Publishing Co., Amsterdam, 1979.
  • M.J. Mills, M.S. Daw, and S.M. Foiles, High-resolution transmission electron microscopy studies of dislocation cores in metals and intermetallic compounds, Ultramicroscopy 56 (1994), pp. 79–93.
  • M.R. Gilbert, S. Queyreau, and J. Marian, Stress and temperature dependence of screw dislocation mobility in -Fe by molecular dynamics, Phys. Rev. B 84 (2011), pp. 174103–174113.
  • C. Domain and G. Monnet, Simulation of screw dislocation motion in iron by molecular dynamics simulations, Phys. Rev. Lett. 95 (2005), pp. 215506–215509.
  • C. Li and Q.Y. Meng, Computer simulation of the vacancy defects interaction with shuffle dislocation in silicon, Superlattices Microstruct. 45 (2009), pp. 1–7.
  • C.R. Miranda, R.W. Nunes, and A. Antonelli, Temperature effects on dislocation core energies in silicon and germanium, Phys. Rev. B 67 (2003), pp. 235201–235208.
  • S.F. Wang, A unified dislocation equation from lattice statics, J. Phys. A 42 (2009), pp. 025208–025216.
  • J.W. Christian and V. Vitek, Dislocations and stacking faults, Rep. Prog. Phys. 33 (1970), pp. 307–411.
  • C. Woodward, D.R. Trinkle, L.G. Hector Jr, and D.L. Olmsted, Prediction of dislocation cores in aluminum from density functional theory, Phys. Rev. Lett. 100 (2008), pp. 045507–045510.
  • G. Schoeck, The core structure of dislocations in Al: A critical assessment, Mater. Sci. Eng., A 333 (2002), pp. 390–396.
  • G. Schoeck, The Peierls model: Progress and limitations, Mater. Sci. Eng., A 400–401 (2005), pp. 7–17.
  • O.N. Mryasov, Y.N. Gornostyrev, and A.J. Freeman, Generalized stacking-fault energetics and dislocation properties: Compact versus spread unit-dislocation structures in TiAl and CuAu, Phys. Rev. B 58 (1998), pp. 11927–11932.
  • X.Z. Wu, S.F. Wang, and H.L. Zhang, Extended core structure of dissociated edge dislocations in FCC crystals with consideration of discreteness, Acta Mech. Solida Sin. 21 (2008), pp. 403–410.
  • R. Wang, S.F. Wang, and X.Z. Wu, Edge dislocation core structures in FCC metals determined from ab initio calculations combined with the improved Peierls-Nabarro equation, Phys. Scr. 83 (2011), pp. 045604–045610.
  • S.F. Wang, Dislocation solution in slowly varying approximation, Phys. Lett. A 313 (2003), pp. 408–411.
  • S.F. Wang, S.R. Li, and R. Wang, Solving dislocation equation for the dislocation with complex core, Eur. Phys. J. B 83 (2011), pp. 15–22.
  • S. Hai and E.B. Tadmor, Deformation twinning at aluminum crack tips, Acta Mater. 51 (2003), pp. 117–131.
  • G. Schoeck, The core structure, recombination energy and Peierls energy for dislocations in Al, Philos. Mag. A 81 (2001), pp. 1161–1176.
  • J.P. Hirth and J. Lothe, Theory of dislocations, 2nd ed., Wiley, New York, 1982.
  • V. Vitek, Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag. 18 (1968), pp. 773–786.
  • E. Kaxiras and M.S. Duesbery, Free energies of generalized stacking faults in Si and implications for the Brittle-Ductile transition, Phys. Rev. Lett. 70 (1993), pp. 3752–3755.
  • J.A. Moriarty, J.F. Belak, R.E. Rudd, P. S\v{o}erlind, F.H. Streitz, and L.H. Yang, Quantum-based atomistic simulation of materials properties in transition metals, J. Phys.: Condens. Matter 14 (2002), pp. 2825–2857.
  • S. Baroni, P. Giannozzi, and A. Testa, Greens-function approach to linear response in solids, Phys. Rev. Lett. 58 (1987), pp. 1861–1864.
  • P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B 43 (1991), pp. 7231–7242.
  • K. Brugger, Thermodynamic definition of higher order elastic coefficients, Phys. Rev. 133 (1964), pp. A1611–A1612.
  • R.N. Thurston and K. Brugger, Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media, Phys. Rev. 133 (1964), pp. A1604–A1610.
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48 (1993), pp. 13115–13118.
  • G. Kresse and J. Hafner, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci. 6 (1996), pp. 15–50.
  • G. Kresse and J. Hafner, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), pp. 11169–11186.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), pp. 17953–17979.
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), pp. 1758–1775.
  • M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40 (1989), pp. 3616–3621.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.
  • A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78 (2008), pp. 134106–134114.
  • A. Togo, Phonopy; software available at http://phonopy.sourceforge.net/.
  • A. Togo, L. Chaput, I. Tanaka, and G. Hug, First-principles phonon calculations of thermal expansion in \text{ Ti}\textsubscript{3}\text{ SiC}\textsubscript{2}, \text{ Ti}\textsubscript{3}\text{ AlC}\textsubscript{2}, and \text{ Ti}\textsubscript{3}\text{ GeC}\textsubscript{2}, Phys. Rev. B 81 (2010), pp. 174301–174306.
  • P. Vinet, J.H. Rose, J. Ferrante, and J.R. Smith, Universal features of the equation of state of solids, J. Phys.: Condens. Matter 1 (1989), pp. 1941–1963.
  • Y. Wang, J.J. Wang, H. Zhang, V.R. Manga, S.L. Shang, L.Q. Chen, and Z.K. Liu, A first-principles approach to finite temperature elastic constants, J. Phys.: Condens. Matter. 22 (2010), pp. 225404–225411.
  • S.L. Shang, H. Zhang, Y. Wang, and Z.K. Liu, Temperature-dependent elastic stiffness constants of α and Al2O3 from first-principles calculations, J. Phys.: Condens. Matter 22 (2010), pp. 375403–375410.
  • P.E. Blöchl, O. Jepsen, and O.K. Andersen, Improved tetrahedron method far Brilleuin-zone integratians, Phys. Rev. B 49 (1994), pp. 16223–16233.
  • N.I. Medvedeva, O.N. Mryasov, Y.N. Gornostyrev, D.L. Novikov, and A.J. Freeman, First-principles total-energy calculations for planar shear and cleavage decohesion processes in B2-ordered NiAl and FeAl, Phys. Rev. B 54 (1996), pp. 13506–13514.
  • J. Hartford, B. von Sydow, G. Wahnström, and B.I. Lundqvist, Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles, Phys. Rev. B 58 (1998), pp. 2487–2496.
  • H.R. Schober and P.H. Dederichs, Phonon states of elements, in Electron States and Fermi Surfaces of Alloys, 1 ed., K.H. Hellwege and J.L. Olsen,eds., Springer-Verlag, Berlin Heidelberg, 1981.
  • Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and P.D. Desai, Thermophysical Properties of Matter Thermal Expansion, Thermophysical properties of matter, Springer, Berlin, 1975.
  • G.F. Davies, Effective elastic moduli under hydrostatic stress-I. quasi-harmonic theory, J. Phys. Chem. Solids 35 (1974), pp. 1513–1520.
  • D. Orlikowski, P. Söderlind, and J.A. Moriarty, First-principles thermoelasticity of transition metals at high pressure: Tantalum prototype in the quasiharmonic limit, Phys. Rev. B 74 (2006), pp. 054109–054118.
  • G.N. Kamm and G.A. Alers, Low-temperature elastic moduli of aluminum, J. Appl. Phys. 35 (1964), pp. 327–330.
  • D. Gerlich and E.S. Fisher, The high temperature elastic moduli of aluminum, J. Phys. Chem. Solids 30 (1969), pp. 1197–1205.
  • D.E. Gray, American Institute of Physics handbook, 3rd ed., McGraw Hill, New York, 1972.
  • G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed., MIT Press, Cambridge, MA, 1971.
  • J.R. Rice, Dislocation nucleation from a crack tip: An analysis based on the Peierls concept, J. Mech. Phys. Solids 40 (1992), pp. 239–271.
  • W.B. Pearson and G.V. Raynor, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon press, London, 1958.
  • R.H. Rautioaho, An interatomic pair potential for aluminium calculation of stacking fault energy, Phys. Status Solidi B 112 (1982), pp. 83–89.
  • K.H. Westmacott and R.L. Peck, A rationalization of secondary defect structures in aluminium-based alloys, Philos. Mag. 23 (1971), pp. 611–622.
  • A.F. Wright, M.S. Daw, and C.Y. Fong, Theoretical investigation of (111) stacking faults in aluminium, Philos. Mag. A 66 (1992), pp. 387–404.
  • P.J.H. Denteneer and J.M. Soler, Defect energetics in aluminium, J. Phys.: Condens. Matter 3 (1991), pp. 8777–8792.
  • A. Hunter, R.F. Zhang, and I.J. Beyerlein, The core structure of dislocations and their relationship to the material, J. Appl. Phys. 115 (2014), pp. 134314–134318.
  • G. Lu, E.B. Tadmor, and E. Kaxiras, From electrons to finite elements: A concurrent multiscale approach for metals, Phys. Rev. B 73 (2006), pp. 024108–024111.
  • W. Höllerbauer and P. Karnthaler, Beitr. Elektronenmikroskop. Direktabb. Oberfl. 14 (1981), p. 361.
  • R. Wang and Q.F. Fang, Core structure and mobility of an edge dislocation in aluminum, J. Alloys Compd. 310 (2000), pp. 80–84.
  • G. Lu, N. Kioussis, V.V. Bulatov, and E. Kaxiras, Dislocation core properties of aluminum: a first-principles study, Mater. Sci. Eng., A 309–310 (2001), pp. 142–147.
  • Q.F. Fang and R. Wang, Atomistic simulation of the atomic structure and diffusion within the core region of an edge dislocation in aluminum, Phys. Rev. B 62 (2000), pp. 9317–9324.
  • H. Van Swygenhoven, P.M. Derlet, and A.G. Frøseth, Stacking fault energies and slip in nanocrystalline metals, Nat. Mater. 3 (2004), pp. 399–403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.