201
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Clathrate hydrates modelled with classical density functional theory coupled with a simple lattice gas and van der Waals-Platteeuw theory

&
Pages 2853-2867 | Received 07 Jun 2016, Accepted 20 Jul 2016, Published online: 08 Aug 2016

References

  • E.D. Sloan and C.A. Koh, Clathrate Hydrates of Natural Gases, CRC Press, Boca Raton, CA, 2008.
  • N.I. Papadimitriou, I.N. Tsimpanogiannis, and A.K. Stubos, Computational approach to study hydrogen storage in clathrate hydrates, Colloids and Surfaces A: Physicochem. Eng. Aspects 357 (2010), pp. 67–73.10.1016/j.colsurfa.2009.10.003
  • J.H. van der Waals and J.C. Platteeuw, Clathrate solutions, Adv. Chem. Phys. 2 (1959), pp. 1–57.
  • V.T. John and G.D. Holder, Choice of cell size in the cell theory of hydrate phase gas–water interactions, J. Phys. Chem. 85 (1981), pp. 1811–1814.10.1021/j150613a010
  • V.T. John and G.D. Holder, Contribution of second and subsequent water shells to the potential energy of guest–host interactions in clathrate hydrates, J. Phys. Chem. 86 (1982), pp. 455–459.10.1021/j100393a008
  • V.T. John and G.D. Holder, Langmuir constants for spherical and linear molecules in clathrate hydrates. Validity of the cell theory, J. Phys. Chem. 89 (1985), pp. 3279–3285.10.1021/j100261a023
  • V.T. John, K.D. Papadopoulos, and G.D. Holder, A generalized model for predicting equilibrium conditions for gas hydrates, AIChE J. 31 (1985), pp. 252–259.10.1002/(ISSN)1547-5905
  • P.M. Rodger, Stability of gas hydrates, J. Phys. Chem. 94 (1990), pp. 6080–6089.10.1021/j100378a082
  • K.A. Sparks and J.W. Tester, Intermolecular potential energy of water clathrates: The inadequacy of the nearest-neighbor approximation, J. Phys. Chem. 96 (1992), pp. 11022–11029.10.1021/j100205a075
  • B. Kvamme, A. Lund, and T. Hertzberg, The influence of gas–gas interactions on the Langmuir constants for some natural gas hydrates, Fluid Phase Equilib. 90 (1993), pp. 15–44.10.1016/0378-3812(93)85002-4
  • K.A. Sparks, J.W. Tester, Z. Cao, and B.L. Trout, Configurational properties of water clathrates:  Monte Carlo and multidimensional integration versus the Lennard-Jones and Devonshire approximation, J. Phys. Chem. B 103 (1999), pp. 6300–6308.10.1021/jp9903108
  • Z. Cao, J.W. Tester, K.A. Sparks, and B.L. Trout, Molecular computations using robust hydrocarbon-water potentials for predicting gas hydrate phase equilibria, J. Phys. Chem. B 105 (2001), pp. 10950–10960.10.1021/jp012292b
  • B.J. Anderson, J.W. Tester, and B.L. Trout, Accurate potentials for argon−water and methane−water interactions via ab initio methods and their application to clathrate hydrates, J. Phys. Chem. B 108 (2004), pp. 18705–18715.10.1021/jp047448x
  • B.J. Anderson, M.Z. Bazant, J.W. Tester, and B.L. Trout, Application of the cell potential method to predict phase equilibria of multicomponent gas hydrate systems, J. Phys. Chem. B 109 (2005), pp. 8153–8163.10.1021/jp045551g
  • M.B. Sweatman and N. Quirke, Characterization of porous materials by gas adsorption at ambient temperatures and high pressure, J. Phys. Chem. B 105 (2001), pp. 1403–1411.10.1021/jp003308l
  • M.B. Sweatman and N. Quirke, Predicting the adsorption of gas mixtures: Adsorbed solution theory versus classical density functional theory, Langmuir 18 (2002), pp. 10443–10454.10.1021/la0200358
  • M. Lasich and D. Ramjugernath, Influence of unlike dispersive interactions on methane adsorption in graphite: A grand canonical Monte Carlo simulation and classical density functional theory study, Eur. Phys. J. B 88 (2015), p. 313.10.1140/epjb/e2015-60668-1
  • W.R. Parrish and J.M. Prausnitz, Dissociation pressures of gas hydrates formed by gas mixtures, Ind. Eng. Chem. Process Des. Dev. 11 (1972), pp. 26–35.10.1021/i260041a006
  • I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38 (1916), pp. 2221–2295.10.1021/ja02268a002
  • M.J. De Oliveira and R.B. Griffiths, Lattice-gas model of multiple layer adsorption, Surf. Sci. 71 (1978), pp. 687–694.10.1016/0039-6028(78)90455-7
  • C. Ebner, Film formation on a weakly attractive substrate within the lattice-gas model, Phys. Rev. A 22 (1980), pp. 2776–2781.10.1103/PhysRevA.22.2776
  • E. Bruno, U.B.M. Marconi, and R. Evans, Phase transitions in a confined lattice gas: Prewetting and capillary condensation, Physica A 141 (1987), pp. 187–210.10.1016/0378-4371(87)90268-8
  • E. Kierlik, P.A. Monson, M.L. Rosinberg, L. Sarkisov, and G. Tarjus, Capillary condensation in disordered porous materials: Hysteresis versus equilibrium behavior, Phys. Rev. Lett. 87 (2001), p. 055701.10.1103/PhysRevLett.87.055701
  • H.J. Woo and P.A. Monson, Phase behavior and dynamics of fluids in mesoporous glasses, Phys. Rev. E 67 (2003), p. 041207.10.1103/PhysRevE.67.041207
  • C. Ebner, Evidence for the roughening and wetting transitions in the lattice-gas model of adsorption from Monte Carlo simulations, Phys. Rev. A 23 (1981), pp. 1925–1930.10.1103/PhysRevA.23.1925
  • R. Pandit, M. Schick, and M. Wortis, Systematics of multilayer adsorption phenomena on attractive substrates, Phys. Rev. B 26 (1982), pp. 5112–5140.10.1103/PhysRevB.26.5112
  • P.A. Monson, Contact angles, pore condensation, and hysteresis: Insights from a simple molecular model, Langmuir 24 (2008), pp. 12295–12302.10.1021/la801972e
  • A. Valencia, M. Brinkmann, and R. Lipowsky, Liquid bridges in chemically structured slit pores, Langmuir 17 (2001), pp. 3390–3399.10.1021/la001749q
  • J.E. Lennard-Jones, Cohesion, Proc. Phys. Soc. 43 (1931), pp. 461–482.10.1088/0959-5309/43/5/301
  • H.A. Lorentz, Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase [On the application of the theorem of the virial in the kinetic theory of gases], Ann. Phys. 248 (1881), pp. 127–136.10.1002/(ISSN)1521-3889
  • D.C. Berthelot, Sure le mélange des gas [On the mixing of gases], Compt. Rend. 126 (1898), pp. 1703–1855.
  • J.J. Potoff and A.Z. Panagiotopoulos, Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture, J. Chem. Phys. 109 (1998), pp. 10914–10920.10.1063/1.477787
  • K.A. Kobe, A.E. Ravicz, and S.P. Vohra, Critical properties and vapor pressures of some ethers and heterocyclic compounds, J. Chem. Eng. Data 1 (1956), pp. 50–56.10.1021/i460001a010
  • J.M. Smith, H.C. van Ness, and M.M. Abbott, Introduction to Chemical Engineering Thermodynamics, 7th ed., McGraw-Hill, New York, 2005.
  • National Institute of Standards and Technology, Chemistry WebBook: Norflurane. Available at http://webbook.nist.gov/cgi/cbook.cgi?ID=811-97-2.
  • H.J.C. Berendsen, P.J.M. Postma, W.F. van Gunsteren, and J. Hermans, Interaction models for water in relation to protein hydration, in Intermolecular Forces, B. Pullman, ed., Reidel, Dordrecht, 1981, pp. 331–342.
  • H.T. Lotz and J.A. Schouten, Clathrate hydrates in the system H2O-Ar at pressures and temperatures up to 30 kbar and 140 °C, J. Chem. Phys. 111 (1999), pp. 10242–10247.10.1063/1.480342
  • W.M. Deaton and E.M. Frost Jr., Gas Hydrates and their Relation to the Operation of Natural Gas Pipeline, U.S. Bureau of Mines Monograph, New York, Vol. 8, 1946.
  • D.R. Marshall, S. Saito, and R. Kobayashi, Hydrates at high pressures: Part I. Methane–water, argon–water, and nitrogen–water systems, AIChE J. 10 (1964), pp. 202–205.
  • A.H. Mohammadi, R. Anderson, and B. Tohidi, Carbon monoxide clathrate hydrates: Equilibrium data and thermodynamic modeling, AIChE J. 51 (2005), pp. 2825–2833.10.1002/(ISSN)1547-5905
  • K. Tumba, P. Naidoo, A.H. Mohammadi, D. Richon, and D. Ramjugernath, Phase equilibria of clathrate hydrates of ethane + ethene, J. Chem. Eng. Data 58 (2013), pp. 896–901.10.1021/je301051c
  • D. Liang, K. Guo, R. Wang, and S. Fan, Hydrate equilibrium data of 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1-dichloro-1-fluoroethane (HCFC-141b) and 1,1-difluoroethane (HFC-152a), Fluid Phase Equilib. 187–188 (2001), pp. 61–70.10.1016/S0378-3812(01)00526-X
  • A.H. Mohammadi and D. Richon, Equilibrium data of carbonyl sulfide and hydrogen sulfide clathrate hydrates, J. Chem. Eng. Data 54 (2009), pp. 2338–2340.10.1021/je900209y
  • J. Jhaveri and D.B. Robinson, Hydrates in the methane-nitrogen system, Can. J. Chem. Eng. 43 (1965), pp. 75–78.10.1002/cjce.v43:2
  • A. van Cleeff and G.A.M. Diepen, Gas hydrates of nitrogen and oxygen, Rec. Trav. Chim. 79 (1960), pp. 582–586.
  • A. van Cleeff and G.A.M. Diepen, Gas hydrates of nitrogen and oxygen II, Rec. Trav. Chim. 84 (1965), pp. 1085–1093.
  • A.T. Trueba, L.J. Rovetto, L.J. Florusse, M.C. Kroon, and C.J. Peters, Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters, Fluid Phase Equilib. 307 (2011), pp. 6–10.10.1016/j.fluid.2011.04.025
  • H. Docherty, A. Galindo, C. Vega, and E. Sanz, A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate, J. Chem. Phys. 125 (2006), p. 074510.10.1063/1.2335450
  • M.M. Conde, C. Vega, C. McBride, E.G. Noya, R. Ramírez, and L.M. Sesé, Can gas hydrate structures be described using classical simulations? J. Chem. Phys. 132 (2010), p. 114503.10.1063/1.3353953
  • M. Lasich, A.H. Mohammadi, K. Bolton, J. Vrabec, and D. Ramjugernath, Influence of unlike dispersion interactions in modeling methane clathrate hydrates, Fluid Phase Equilib. 381 (2014), pp. 108–115.10.1016/j.fluid.2014.08.013
  • M. Lasich, A.H. Mohammadi, K. Bolton, J. Vrabec, and D. Ramjugernath, On the application of binary correction factors in lattice distortion calculations for methane clathrate hydrates, Philos. Mag. 94 (2014), pp. 974–990.10.1080/14786435.2013.873553
  • N.I. Papadimitriou, I.N. Tsimpanogiannis, I.G. Economou, and A.K. Stubos, Influence of combining rules on the cavity occupancy of clathrate hydrates by Monte Carlo simulations, Mol. Phys. 112 (2014), pp. 2258–2274.10.1080/00268976.2014.902136
  • J. Costandy, V.K. Michalis, I.N. Tsimpanogiannis, A.K. Stubos, and I.G. Economou, The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates, J. Chem. Phys. 143 (2015), p. 094506.10.1063/1.4929805
  • V.V. Sizov and E.M. Piotrovskaya, Computer simulation of methane hydrate cage occupancy, J. Phys. Chem. B 111 (2007), pp. 2886–2890.10.1021/jp0658905
  • E.D. Sloan and F. Fleyfel, Hydrate dissociation enthalpy and guest size, Fluid Phase Equilib. 76 (1992), pp. 123–140.10.1016/0378-3812(92)85082-J
  • M.M. Conde and C. Vega, Determining the three-phase coexistence line in methane hydrates using computer simulations, J. Chem. Phys. 133 (2010), p. 064507.10.1063/1.3466751
  • N.I. Papadimitriou, I.N. Tsimpanogiannis, and A.K. Stubos, Monte Carlo simulations of methane hydrates, 7th International Conference on Clathrate Hydrates, Edinburgh, UK, 2011.
  • M. Lasich, A.H. Mohammadi, K. Bolton, J. Vrabec, and D. Ramjugernath, Phase equilibria of methane clathrate hydrates from grand canonical Monte Carlo simulations, Fluid Phase Equilib. 369 (2014), pp. 47–54.10.1016/j.fluid.2014.02.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.