397
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The effect of Ag, Pb and Bi impurities on grain boundary sliding and intergranular decohesion in Copper

, , &
Pages 2868-2886 | Received 21 Sep 2015, Accepted 22 Jul 2016, Published online: 05 Aug 2016

References

  • M. Yamaguchi, M. Shiga, and H. Kaburaki, Grain goundary decohesion by impurity segregation in a nickel-sulfur system, Science 307 (2005), pp. 393–397.
  • R. Schweinfest, A.T. Paxton, and M.W. Finnis, Bismuth embrittlement of copper is an atomic size effect, Nature 432 (2004), pp. 1008–1011.
  • A.Y. Lozovoi, A.T. Paxton, and M.W. Finnis, Structural and chemical embrittlement of grain boundaries by impurities: A general theory and first-principles calculations for copper, Phys. Rev. B 74 (2006), pp. 155416-1–155416-13.
  • J.R. Rice and J.-S. Wang, Embrittlement of interfaces by solute segregation, Mater. Sci. Eng. A 107 (1989), pp. 23–40.
  • G. Schusteritsch and E. Kaxiras, Sulfur-induced embrittlement of nickel: A first-principles study, Modelling Simul. Mater. Sci. Eng. 20 (2012), pp. 065007-1–065007-15.
  • A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press, Oxford, UK, 1995.
  • F.R.N. Nabarro and H.L. de Villiers, The Physics of Creep, Taylor & Francis, London, 1995.
  • P. Haasen, Physical Metallurgy, Cambridge University, Cambridge, UK, 1986.
  • L. Lu, M.L. Sui, and K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature, Science 287 (2000), pp. 1463–1466.
  • H. Van Swygenhoven and P.M. Derlet, Grain-boundary sliding in nanocrystalline fcc metals, Phys. Rev. B 64 (2001), pp. 224105-1–224105-9.
  • D. Farkas, H. Van Swygenhoven, and P.M. Derlet, Intergranular fracture in nanocrystalline metals, Phys. Rev. B 66 (2002), pp. 060101-1(R)–060101-4(R).
  • D.V. Bachurin and P. Gumbsch, Accommodation processes during deformation of nanocrystalline palladium, Acta Mater. 58 (2010), pp. 5491–5501.
  • K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater. 51 (2003), pp. 5743–5774.
  • J. Schiøtz, F.D. Di Tolla, and K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature 391 (1998), pp. 561–563.
  • J. Schiøtz and K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 301 (2003), pp. 1357–1359.
  • J. Schiøtz, T. Vegge, F.D. Di Tolla, and K.W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals, Phys. Rev. B 60 (1999), pp. 11 971–11 983.
  • N.Q. Vo, R.S. Averback, P. Bellon, S. Odunuga, and A. Caro, Quantitative description of plastic deformation in nanocrystalline Cu: Dislocation glide vs. grain boundary sliding, Phys. Rev. B 77 (2008), pp. 134108-1–134108-9.
  • L. Smith and D. Farkas, Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms, Philos. Mag. 94 (2014), pp. 152–173.
  • E.O. Hall, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. B 64 (1951), pp. 747–753.
  • N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. London 174 (1953), pp. 25–28.
  • M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater. 55 (2007), pp. 4041–4065.
  • K. Yang, H.-J. Fecht andY. Ivanisenko, First direct in situ observation of grain boundary sliding in ultrafine grained noble metal, Adv. Eng. Mater. 16 (2014), pp. 517–521.
  • W. Hampe, Beiträge zu der Metallurgie des Kupfers, Zeitschrift für das Berg-, Hütten- und Salinenwesen in dem Preussischen Staate 22 (1874), pp. 93–138.
  • W.R. Warke, Liquid metal and solid metal induced embrittlement, in ASM Handbook, Failure Analysis and Prevention, W.T. Becker and R.J. Shipley, eds., Vol. 11, ASM International, Ohio, 2002, pp. 861–867.
  • M.A. Tschopp, K.N. Solanki, F. Gao, X. Sun, M.A. Khaleel, and M.F. Horstemeyer, Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe, Phys. Rev. B 85 (2012), pp. 064108-1–064108-21.
  • M. Rajagopalan, M.A. Tschopp, and K.N. Solanki, Grain boundary segregation of interstitial and substitutional impurity atoms in alpha-iron, J. Mater. 66 (2014), pp. 129–138.
  • N.R. Rhodes, M.A. Tschopp, and K.N. Solanki, Quantifying the energetics and length scales of carbon segregation to α-Fe symmetric tilt grain boundaries using atomistic simulations, Model. Simul. Mater. Sci. Eng. 21 (2013), pp. 035009-1–035009-21.
  • K.N. Solanki, M.A. Tschopp, M.A. Bhatia, and N.R. Rhodes, Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in α-Fe, Metall. Mater. Trans. A. 44 (2013), pp. 1365–1375.
  • M. Rajagopalan, M.A. Bhatia, M.A. Tschopp, D.J. Srolovitz, and K.N. Solanki, Atomic-scale analysis of liquid-gallium embrittlement of aluminum grain boundaries, Acta Mater. 73 (2014), pp. 312–325.
  • P.C. Millett, R.P. Selvam, S. Bansal, and A. Saxena, Atomistic simulation of grain boundary energetics: Effects of dopants, Acta Mater. 53 (2005), pp. 3671–3678.
  • D.E. Spearot, M.A. Tschopp, K.I. Jacob, and D.L. McDowell, Tensile strength of (100) and (110) tilt bicrystal copper interfaces, Acta Mater. 55 (2007), pp. 705–714.
  • S. Sanyal, Umesh V. Waghmare, P. R. Subramanian, and M. F. X. Gigliotti, Effect of dopants on grain boundary decohesion of Ni: A first-principles study, Appl. Phys. Lett. 93 (2008), pp. 223113-1–223113-3.
  • G. Lu and N. Kioussis, Interaction of vacancies with a grain boundary in aluminum: A first-principles study, Phys. Rev. B 64 (2001), pp. 024101-1–024101-7.
  • N. Du, Y. Qi, P.E. Krajewski, and A.F. Bower, Aluminum R3 grain boundary sliding enhanced by vacancy diffusion, Acta Mater. 58 (2010), pp. 4245–4252.
  • C. Molteni, N. Marzari, M.C. Payne, and V. Heine, Sliding mechanisms in aluminum grain boundaries, Phys. Rev. Lett. 79(5) (1997), pp. 869–872.
  • H.-B. Zhou, Y.-L. Liu, C. Duan, S. Jin, Y. Zhang, F. Gao, X. Shu, and G.-H. Lu, Effect of vacancy on the sliding of an iron grain boundary, J. Appl. Phys. 109 (2011), pp. 113512-1–113512-5.
  • P. Ballo, J. Degmová, and V. Sluge\v{n}, Grain boundary sliding and migration in copper: Vacancy effect, Phys. Rev. B 72 (2005), pp. 064118-1–064118-5.
  • W.M. Yin, S.H. Whang, and R.A. Mirshams, Effect of interstitials on tensile strength and creep in nanostructured Ni, Acta Mater. 53 (2005), pp. 383–392.
  • W.P. Green, M.A. Kulas, A. Niazi, K. Oishi, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Deformation and failure of a superplastic AA5083 aluminum material with a Cu addition, Metall. Mater. Trans. A 37A (2006), pp. 2727–38.
  • F. Weinberg, Grain boundary shear in aluminum, Trans. AIME 212 (1958), pp. 808–17.
  • M.D. Halliday and C.J. Beevers, Some observations of grain-boundary sliding in aluminium bicrystals tested at constant strain rate and constant rate of stress increase, J. Mater. Sci. 6 (1971), pp. 1254–1260.
  • M. Kato, Grain boundary sliding in high-purity aluminium bicrystal and Al-Cu solid solution bicrystal during plastic deformation, Trans. Jpn. Inst. Met. 10 (1969), pp. 215–22.
  • G. Mima, T. Oka, and T. Nishi, On the grain boundary sliding of aluminum alloy bicrystals during the tensile test under constant stress and heating rate conditions, J. Jpn. Inst. Met. 33 (1969), pp. 639–645.
  • N. Du, Y.Qi, P.E. Krajewski, and A.F. Bower, The effect of solute atoms on aluminum grain boundary sliding at elevated temperature, Metall. Mater. Trans. A 2A (2011), pp. 651–659.
  • G. Duscher, M.F. Chisholm, U. Alber, and M. Rühle, Bismuth-induced embrittlement of copper grain boundaries, Nature 3 (2004), pp. 621–626.
  • A.Y. Lozovoi and A.T. Paxton, Boron in copper: A perfect misfit in the bulk and cohesion enhancer at a grain boundary, Phys. Rev. B 77 (2008), pp. 165413-1–165413-14.
  • M.P. Seah, Grain boundary segregation, J. Phys. F 10 (1980), pp. 1043–1064.
  • M.P. Seah, Segregation and the Strength of Grain Boundaries, Proc. R. Soc. Lond. A 349 (1976), pp. 535–554.
  • J.R. Rice, Dislocation nucleation from a crack tip: An analysis based on the Peierls concept, J. Mech. Phys. Solids 40 (1992), pp. 239–271.
  • R.O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Modern Phys. 61 (1989), pp. 689–746.
  • S.M. Foiles, M.I. Baskes, and M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33 (1986), pp. 7983–7991.
  • N. Choly and G. Lu, W. E and E. Kaxiras, Multiscale simulations in simple metals: A density-functional-based methodology, Phys. Rev. B 71 (2005), pp. 094101-1–094101-16.
  • X. Zhang and G. Lu, Quantum mechanics/molecular mechanics methodology for metals based on orbital-free density functional theory, Phys. Rev. B 76 (2007), pp. 245111-1–245111-10.
  • X. Zhang, C.-Y. Wang, and G. Lu, Electronic structure analysis of self-consistent embedding theory for quantum/molecular mechanics simulations, Phys. Rev. B 78 (2008), pp. 235119-1–235119-5.
  • CP2K, (2015), software available at https://www.cp2k.org/.
  • G. Lippert, J. Hutter, and M. Parrinello, A hybrid Gaussian and plane wave density functional scheme, Mol. Phys. 92 (1997), pp. 477–487.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials, Phys. Rev. B 54 (1996), pp. 1703–1710.
  • M. Krack, Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals, Theor. Chem. Acc. 114 (2005), pp. 145–152.
  • J. VandeVondele and J. Hutter, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, J. Chem. Phys. 127 (2007), pp. 114105-1–114105-9.
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63 (2001), pp. 224106-1–224106-16.
  • W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, Cambridge, UK, 2007.
  • J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput. 35 (1980), pp. 773–782.
  • D.C. Liu and J. Nocedal, On the limited memory method for large scale optimization, Math. Prog. B 45(3) (1989), pp. 503–528.
  • E.D. Hondros and M.P. Seah, Segregation to interfaces, Inter. Metals Rev. 222 (1977), pp. 262–301.
  • T. Riedl, A. Kirchner, K. Eymann, A. Shariq, R. Schlesiger, G. Schmitz, M. Ruhnow, and B. Kieback, Elemental distribution, solute solubility and defect free volume in nanocrystalline restricted-equilibrium Cu-Ag alloys, J. Phys.: Condens. Matter 25 (2013), pp. 115401-1–115401-9.
  • P.M. Anderson and J.R. Rice, Dislocation emission from cracks in crystals or along crystal interfaces, Scr. Metall. 20 (1986), pp. 1467–1472.
  • R. Thomson, Crack stability and branching at interfaces, Phys. Rev. B. 5219 (1995), pp. 14245–14253.
  • J.R. Rice and R. Thomson, Ductile vs. brittle behavior of crystals, Philos. Mag. 29 (1974), pp. 73–97.
  • U.V. Waghmare, E. Kaxiras, V.V. Bulatov, and M.S. Duesbery, Effects of alloying on the ductility of MoSi2 single crystals from first-principles calculations, Modelling Simul. Mater. Sci. Eng. 6 (1998), pp. 493–506.
  • U.V. Waghmare, E. Kaxiras, and M.S. Duesbery, Modeling brittle and ductile behavior of solids from first-principles calculations, Phys. Stat. Sol. B 217 (2000), pp. 545–564.
  • J.C. Slater, Atomic radii in crystals, J. Chem. Phys. 41 (1964), pp. 3199–3204.
  • T. Surholt and C. Herzig, Grain boundary self- and solute diffusion and segregation in general large angle grain boundaries in copper, Def. Differ. Forum 1391 (1997), pp. 143–147.
  • U. Alber, H. Müllejans, and M. Rühle, Bismuth segregation at copper grain boundaries, Acta Mater. 47(15) (1999), pp. 4047–4060.
  • B. Zhou and E.A. Carter, First principles local pseudopotential for silver: Towards orbital-free density-functional theory for transition metals, J. Chem. Phys. 122 (2005), pp. 184108-1–184108-10.
  • I. Shin, A. Ramasubramaniam, C. Huang, L. Hung, and E.A. Carter, Orbital-free density functional theory simulations of dislocations in aluminum, Philos. Mag. 89(34) (2009), pp. 3195–3213.
  • C. Huang and E.A. Carter, Toward an orbital-free density functional theory of transition metals based on an electron density decomposition, Phys. Rev. B 85 (2012), pp. 045126-1–045126-9.
  • N. Choly and E. Kaxiras, Kinetic energy density functionals for non-periodic systems, Solid State Commun. 121 (2002), pp. 281–286.
  • L. Genovesea, T. Deutsch, and S. Goedecker, Efficient and accurate three dimensional Poisson solver for surface problems, J. Chem. Phys. 127 (2007), pp. 054704-1–054704-6.
  • L. Genovesea, T. Deutsch, A. Neelov, S. Goedecker, and G. Beylkin, Efficient solution of Poisson’s equation with free boundary conditions, J. Chem. Phys. 125 (2006), pp. 074105-1–074105-5.
  • P.E. Blöchl, Electrostatic decoupling of periodic images of plane wave expanded densities and derived atomic point charges, J. Chem. Phys. 103 (1995), pp. 7422–7428.
  • J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Commun. 167 (2005), pp. 103–128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.