181
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Reaction pathway analysis for shuffle-set 60° perfect dislocation in Si

, , &
Pages 2902-2918 | Received 23 Apr 2016, Accepted 28 Jul 2016, Published online: 10 Aug 2016

References

  • V.V. Bulatov, S. Yip, and A.S. Argon, Atomic modes of dislocation mobility in silicon, Philos. Mag. A. 72 (1995), pp. 453–496.10.1080/01418619508239934
  • W. Cai, V.V. Bulatov, J.F. Chang, J. Li, and S. Yip, Dislocation core effects on mobility, in Dislocations in Solids, F.R.N. Nabarro and J.P. Hirth, eds., Elsevier, Amsterdam, 2004, pp. 1–70.10.1016/S1572-4859(05)80003-8
  • J. Rabier, L. Pizzagalli, and J.L. Demenet, Dislocations in silicon at high stress, Dislocations in Solids 16 (2010), pp. 47–108.10.1016/S1572-4859(09)01602-7
  • F. Seitz, The plasticity of silicon and germanium, Phys. Rev. 88 (1952), pp. 722–724.10.1103/PhysRev.88.722
  • M.S. Duesbery and B. Joos, Dislocation motion in silicon: The shuffle-glide controversy, Philos. Mag. Lett. 74 (1996), pp. 253–258.10.1080/095008396180191
  • J. Rabier and J.L. Demenet, On the nucleation of shuffle dislocations in Si, Phys. Status solidi A 202 (2005), pp. 944–948.10.1002/pssa.v202:5
  • K. Wessel and H. Alexander, On the mobility of partial dislocations in silicon, Philos. Mag. 35 (1977), pp. 1523–1536.10.1080/14786437708232975
  • K. Sato, K. Hiraga, and K. Sumino, HVEM structure images of extended 60°-and screw dislocations in silicon, Jpn. J. Appl. Phys. 19 (1980), p. L155.10.1143/JJAP.19.L155
  • A. Gomez, D.J.H. Cockayne, P.B. Hirsch, and V. Vitek, Dissociation of near-screw dislocations in germanium and silicon, Philos. Mag. 31 (1975), pp. 105–113.10.1080/14786437508229289
  • L. Pizzagalli, J.L. Demenet, and J. Rabier, Theoretical study of pressure effect on the dislocation core properties in semiconductors, Phys. Rev. B 79 (2009), p. 045203.10.1103/PhysRevB.79.045203
  • L. Pizzagalli, A. Pedersen, A. Arnaldsson, H. Jónsson, and P. Beauchamp, Theoretical study of kinks on screw dislocation in silicon, Phys. Rev. B 77 (2008), p. 064106.10.1103/PhysRevB.77.064106
  • L. Pizzagalli and P. Beauchamp, Dislocation motion in silicon: The shuffle-glide controversy revisited, Philos. Mag. Lett. 88 (2008), pp. 421–427.10.1080/09500830802136222
  • J. Rabier, P. Cordier, J.L. Demenet, and H. Garem, Plastic deformation of Si at low temperature under high confining pressure, Mater. Sci. Eng. A 309–310 (2001), pp. 74–77.10.1016/S0921-5093(00)01770-6
  • H. Saka, K. Yamamoto, S. Arai, and K. Kuroda, In-situ TEM observation of transformation of dislocations from shuffle to glide sets in Si under supersaturation of interstitials, Philos. Mag. 86 (2006), pp. 4841–4850.10.1080/14786430600764898
  • S. Izumi, H. Ohta, C. Takahashi, T. Suzuki, and H. Saka, Shuffle-set dislocation nucleation in semiconductor silicon device, Philos. Mag. Lett. 90 (2010), pp. 707–714.10.1080/09500839.2010.501767
  • L. Pizzagalli, J. Godet, and S. Brochard, Glissile dislocations with transient cores in silicon, Phys. Rev. Lett. 103 (2009), p. 065505.10.1103/PhysRevLett.103.065505
  • J. Godet, S. Brochard, L. Pizzagalli, P. Beauchamp, and J.M. Soler, Dislocation formation from a surface step in semiconductors: An ab initio study, Phys. Rev. B 73 (2006), p. 092105.10.1103/PhysRevB.73.092105
  • S. Izumi and S. Yip, Dislocation nucleation from a sharp corner in silicon, J. Appl. Phys. 104 (2008), p. 033513.10.1063/1.2963487
  • J. Godet, P. Hirel, S. Brochard, and L. Pizzagalli, Evidence of two plastic regimes controlled by dislocation nucleation in silicon nanostructures, J. Appl. Phys. 105 (2009), p. 026104.10.1063/1.3072707
  • K. Shima, S. Izumi, and S. Sakai, Reaction pathway analysis for dislocation nucleation from a sharp corner in silicon: Glide set versus shuffle set, J. Appl. Phys. 108 (2010), p. 063504.10.1063/1.3486465
  • M.Z. Bazant, E. Kaxiras, and J.F. Justo, Environment-dependent interatomic potential for bulk silicon, Phys. Rev. B 56 (1997), p. 8542.10.1103/PhysRevB.56.8542
  • F.H. Stillinger and T.A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31 (1985), p. 5262.10.1103/PhysRevB.31.5262
  • J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Phys. Rev. B 38 (1988), p. 9902.10.1103/PhysRevB.38.9902
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.10.1006/jcph.1995.1039
  • G. Henkelman, B.P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000), pp. 9901–9904.10.1063/1.1329672
  • J. Li, AtomEye: An efficient atomistic configuration viewer, Modell. Simul. Mater. Sci. Eng. 11 (2003), pp. 173–177.10.1088/0965-0393/11/2/305
  • Q. Ren, B. Joós, and M.S. Duesbery, Test of the Peierls–Nabarro model for dislocations in silicon, Phys. Rev. B 52 (1995), p. 13223.10.1103/PhysRevB.52.13223
  • K. Zhong, Q. Meng, and W. Zhao, A new stable core structure of 60° shuffle dislocation in silicon and associated mobility behavior, Phys. Status Solidi B 249 (2012), p. 1250.10.1002/pssb.201147540

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.