1,201
Views
78
CrossRef citations to date
0
Altmetric
NTMRD V

Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour

, , &
Pages 3322-3335 | Received 22 Feb 2016, Accepted 26 Jul 2016, Published online: 02 Sep 2016

References

  • R. Li and K. Sieradzki, Ductile–brittle transition in random porous Au, Phys. Rev. Lett. 68(8) (1992), pp. 1168–1171.10.1103/PhysRevLett.68.1168
  • Y. Ding, Y.J. Kim, and J. Erlebacher, Nanoporous gold leaf: “Ancient technology”/advanced material, Adv. Mater. 16(21) (2004), pp. 1897–1900.10.1002/(ISSN)1521-4095
  • P.R. Onck, Scale effects in cellular metals, MRS Bull. 28(04) (2003), pp. 279–283.10.1557/mrs2003.81
  • J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, and F.F. Abraham, Size effects on the mechanical behavior of nanoporous Au, Nano Lett. 6(10) (2006), pp. 2379–2382.10.1021/nl061978i
  • A.M. Hodge, J. Biener, J.R. Hayes, P.M. Bythrow, C.A. Volkert, and A.V. Hamza, Scaling equation for yield strength of nanoporous open-cell foams, Acta Mater. 55(4) (2007), pp. 1343–1349.10.1016/j.actamat.2006.09.038
  • N.J. Briot and T.J. Balk, Developing scaling relations for the yield strength of nanoporous gold, Philos. Mag. 95(27) (2015), pp. 2955–2973.10.1080/14786435.2015.1078512
  • C.A. Volkert, E.T. Lilleodden, D. Kramer, and J. Weissmüller, Approaching the theoretical strength in nanoporous Au, Appl. Phys. Lett. 89(6) (2006), pp. 1920-1–1920-3.
  • J. Diao, K. Gall, and M.L. Dunn, Surface-stress-induced phase transformation in metal nanowires, Nat. Mater. 2(10) (2003), pp. 656–660.10.1038/nmat977
  • K. Gall, J. Diao, and M.L. Dunn, The strength of gold nanowires, Nano Lett. 4(12) (2004), pp. 2431–2436.10.1021/nl048456s
  • B. Wu, A. Heidelberg, and J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires, Nat. Mater. 4(7) (2005), pp. 525–529.10.1038/nmat1403
  • C.A. Volkert and E.T. Lilleodden, Size effects in the deformation of sub-micron Au columns, Philos. Mag. 86(33–35) (2006), pp. 5567–5579.10.1080/14786430600567739
  • J.R. Greer and W.D. Nix, Nanoscale gold pillars strengthened through dislocation starvation, Phys. Rev. B 73(24) (2006), p. 245410.10.1103/PhysRevB.73.245410
  • C. Deng and F. Sansoz, Size-dependent yield stress in twinned gold nanowires mediated by site-specific surface dislocation emission, Appl. Phys. Lett. 95(9) (2009), p. 091914.10.1063/1.3222936
  • B. Roos, B. Kapelle, G. Richter, and C.A. Volkert, Surface dislocation nucleation controlled deformation of Au nanowires, Appl. Phys. Lett. 105(20) (2014), p. 201908.10.1063/1.4902313
  • R.H. Baughman, Materials science: Muscles made from metal, Science 300(5617) (2003), pp. 268–269.10.1126/science.1082270
  • H.J. Jin and J. Weissmueller, A material with electrically tunable strength and flow stress, Science 332(6034) (2011), pp. 1179–1182.10.1126/science.1202190
  • L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK, 1997.10.1017/CBO9781139878326
  • N. Huber, R.N. Viswanath, N. Mameka, J. Markmann, and J. Weißmüller, Scaling laws of nanoporous metals under uniaxial compression, Acta Mater. 67 (2014), pp. 252–265.10.1016/j.actamat.2013.12.003
  • N. Mameka, K. Wang, J. Markmann, E.T. Lilleodden, and J. Weissmüller, Nanoporous gold – Testing macro-scale samples to probe small-scale mechanical behavior, Mater. Res. Lett. (2015), pp. 1–10.
  • H. Rösner, S. Parida, D. Kramer, C.A. Volkert, and J. Weissmüller, Reconstructing a nanoporous metal in three dimensions: An electron tomography study of dealloyed gold leaf, Adv. Eng. Mater. 9(7) (2007), pp. 535–541.10.1002/(ISSN)1527-2648
  • T. Fujita, L.H. Qian, K. Inoke, J. Erlebacher, and M.W. Chen, Three-dimensional morphology of nanoporous gold, Appl. Phys. Lett. 92(25) (2008), p. 251902.10.1063/1.2948902
  • Y.C.K. Chen, Y.S. Chu, J. Yi, I. McNulty, Q. Shen, P.W. Voorhees, and D.C. Dunand, Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography, Appl. Phys. Lett. 96(4) (2010), p. 043122.10.1063/1.3285175
  • Y.C.K. Chen-Wiegart, S. Wang, Y.S. Chu, W. Liu, I. McNulty, P.W. Voorhees, and D.C. Dunand, Structural evolution of nanoporous gold during thermal coarsening, Acta Mater. 60(12) (2012), pp. 4972–4981.10.1016/j.actamat.2012.05.012
  • L. Holzer, F. Indutnyi, P.H. Gasser, B. Muench, and M. Wegmann, Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography, J. Microsc. 216(1) (2004), pp. 84–95.10.1111/j.0022-2720.2004.01397.x
  • M.D. Uchic, L. Holzer, B.J. Inkson, E.L. Principe, and P. Munroe, Three-dimensional microstructural characterization using focused ion beam tomography, MRS Bull. 32 (2007), pp. 408–416.10.1557/mrs2007.64
  • L. Holzer and M. Cantoni, Nanofabrication using focused ion and electron beams: Principles and applications, Rev. FIB-tomography, 2011, ISBN 559201222.
  • K. Wang and J. Weissmüller, Composites of nanoporous gold and polymer, Adv. Mater. 25(9) (2013), pp. 1280–1284.10.1002/adma.v25.9
  • T. Hildebrand and P. Ruegsegger, A new method for the model-independent assessment of thickness in three-dimensional images, J. Microsc. 185(1) (1997), pp. 67–75.10.1046/j.1365-2818.1997.1340694.x
  • L.H. Qian and M.W. Chen, Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation, Appl. Phys. Lett. 91(8) (2007), p. 083105.10.1063/1.2773757
  • K. Kolluri and M.J. Demkowicz, Coarsening by network restructuring in model nanoporous gold, Acta Mater. 59(20) (2011), pp. 7645–7653.10.1016/j.actamat.2011.08.037
  • A. Odgaard and H.J.G. Gundersen, Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions, Bone 14(2) (1993), pp. 173–182.10.1016/8756-3282(93)90245-6
  • A. Odgaard, Three-dimensional methods for quantification of cancellous bone architecture, Bone 20(4) (1997), pp. 315–328.10.1016/S8756-3282(97)00007-0
  • A. Odgaard and H.J.G. Gundersen, Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions, Bone 14(2) (1993), pp. 173–182.10.1016/8756-3282(93)90245-6
  • J. Toriwaki and T. Yonekura, Euler number and connectivity indexes of a three dimensional digital picture, FORMA-TOKYO- 17(3) (2002), pp. 183–209.
  • M. Doube, M.M. Kłosowski, I. Arganda-Carreras, F.P. Cordelières, R.P. Dougherty, J.S. Jackson, B. Schmid, J.R. Hutchinson, S. J. Shefelbine, BoneJ: Free and extensible bone image analysis in ImageJ, Bone 47(6) (2010), pp. 1076–1079.10.1016/j.bone.2010.08.023
  • R. Mendoza, K. Thornton, I. Savin, and P.W. Voorhees, The evolution of interfacial topology during coarsening, Acta Mater. 54(3) (2006), pp. 743–750.10.1016/j.actamat.2005.10.010
  • R.T. DeHoff, E.H. Aigeltinger, and K.R. Craig, Experimental determination of the topological properties of three-dimensional microstructures, J. Micros. 95(1) (1972), pp. 69–91.10.1111/jmi.1972.95.issue-1
  • L.J. Gibson, Mechanical behavior of metallic foams, Annu. Rev. Mater. Sci. 30(1) (2000), pp. 191–227.10.1146/annurev.matsci.30.1.191
  • Z.W. Shan, R.K. Mishra, S.S. Syed Asif, O.L. Warren, and A.M. Minor, Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals, Nat. Mater. 7(2) (2008), pp. 115–119.10.1038/nmat2085
  • M.F. Ashby, T. Evans, N.A. Fleck, J.W. Hutchinson, H.N.G. Wadley, and L.J. Gibson, Metal foams: A design guide: A Design Guide, Elsevier, Burlington, MA, 2000.
  • J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Fiji: An open-source platform for biological-image analysis, Nat. Methods 9(7) (2012), pp. 676–682.10.1038/nmeth.2019
  • P. Thevenaz, U.E. Ruttimann, and M. Unser, A pyramid approach to subpixel registration based on intensity, IEEE Trans. Image Process. 7(1) (1998), pp. 27–41.10.1109/83.650848
  • T. Hildebrand and P. Ruegsegger, A new method for the model-independent assessment of thickness in three-dimensional images, J. Microsc. 185(1) (1997), pp. 67–75.10.1046/j.1365-2818.1997.1340694.x
  • T.C. Lee, R.L. Kashyap, and C.N. Chu, Building skeleton models via 3-D medial surface axis thinning algorithms, CVGIP. Graphical Models Image Process. 56(6) (1994), pp. 462–478.10.1006/cgip.1994.1042

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.