736
Views
43
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Hall–Petch description of nanopolycrystalline Cu, Ni and Al strength levels and strain rate sensitivities

Pages 3097-3108 | Received 01 Jun 2016, Accepted 11 Aug 2016, Published online: 30 Aug 2016

References

  • R.W. Armstrong, 60 years of Hall–Petch: Past to present nano-scale connections, (JPN) Mater. Trans. 55 (2014), pp. 2–12.
  • R.W. Armstrong, Hall–Petch analysis for nanopolycrystals, in Nanometals – Status and Perspective, in 33rd Risö International Symposium on Materials Science, S. Faester, N. Hansen, X. Huang, D. Juul Jensen, and B. Ralph, eds., Technical University of Denmark, Roskilde Campus, Roskilde, 2012, pp. 181–199.
  • N. Hansen and B. Ralph, The strain and grain size dependence of the flow stress of copper, Acta Metall. 30 (1982), pp. 411–417.10.1016/0001-6160(82)90221-8
  • R.P. Carreker, Jr. and W.R. Hibbard, Jr., Tensile deformation of high-purity copper as a function of temperature, strain rate and grain size, Acta Metall. 1 (1953), pp. 654–663.10.1016/0001-6160(53)90022-4
  • E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. London, Sect. B 64 (1951), pp. 747–753.10.1088/0370-1301/64/9/303
  • N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953), pp. 25–28.
  • R.W. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch, The plastic deformation of polycrystalline aggregates, Philos. Mag. 7 (1962), pp. 45–58.10.1080/14786436208201857
  • R.P. Carreker, Jr. and W.R. Hibbard, Jr., Tensile deformation of aluminum as a function of temperature, strain rate and grain size, Trans. TMS-AIME 209 (1957), pp. 1157–1163.
  • N. Hansen, The effect of grain size and strain on the tensile flow stress of aluminium at room temperature, Acta Metall. 25 (1977), pp. 863–869.10.1016/0001-6160(77)90171-7
  • R.W. Armstrong, Engineering science aspects of the Hall–Petch relation, Acta Mech. 225 (2014), pp. 1013–1028.10.1007/s00707-013-1048-2
  • C. Keller and E. Hug, Hall–Petch behaviour of Ni polycrystals with a few grains per thickness, Mater. Lett. 62 (2008), pp. 1718–1720.10.1016/j.matlet.2007.09.069
  • L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science 323 (2009), pp. 607–610.10.1126/science.1167641
  • A. Torrents, H. Yang, and F. Mohamed, Effect of annealing on hardness and the modulus of elasticity in bulk nanocrystalline nickel, Metall. Mater. Trans. A 41 (2010), pp. 621–630.10.1007/s11661-009-0147-0
  • G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, and R.W. Armstrong, Hall–Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel, Scr. Metall. 20 (1986), pp. 93–97.10.1016/0036-9748(86)90219-X
  • N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing, Scr. Mater. 47 (2002), pp. 893–899.10.1016/S1359-6462(02)00282-8
  • R.W. Armstrong, The yield and flow stress dependence on polycrystal grain size, in Yield, Flow and Fracture of Polycrystals, T.N. Baker, ed., Applied Science, London, 1983, pp. 1–31.
  • R.W. Armstrong, Dislocation queueing analysis for the plastic deformation of aluminum polycrystals, in Physics of Materials, A Festschrift for Dr. Walter Boas on the occasion of his 75th Birthday, D.W. Borland, L.M. Clarebrough, and A.J.W. Moore, eds., University of Melbourne, Australia, 1979, pp. 1–11.
  • R.W. Armstrong, Strength and ductility of metals, Indian Inst. Met. 50 (1997), pp. 521–531.
  • J.F. Bell, A generalized large deformation behaviour for face-centred cubic solids — high purity copper, Philos. Mag. 10 (1964), pp. 107–126.10.1080/14786436408224211
  • J.F. Bell, Generalized large deformation behaviour for face-centred cubic solids: Nickel, aluminium, gold, silver and lead, Philos. Mag. 11 (1965), pp. 1135–1156.10.1080/14786436508224924
  • N. Hansen, Boundary strengthening in undeformed and deformed polycrystals, Mater. Sci. Eng., A 409 (2005), pp. 39–45.10.1016/j.msea.2005.04.061
  • V.E. Panin and R.W. Armstrong, Hall–Petch analysis for temperature and strain rate dependent deformation of polycrystalline lead, Phys. Mesomech. 19 (2016), pp. 35–40.10.1134/S1029959916010045
  • J.T. Al-haidary, N.J. Petch, and E.R. de los Rios, The plastic deformation of polycrystals I. Aluminium between room temperature and 400°C, Philos. Mag. A 47 (1983), pp. 869–890.10.1080/01418618308243126
  • I. Matsui, T. Uesugi, Y. Takigawa, and K. Higashi, Effect of interstitial carbon on the mechanical properties of electrodeposited bulk nanocrystalline Ni, Acta Mater. 61 (2013), pp. 3360–3369.10.1016/j.actamat.2013.02.025
  • J.C.M. Li and G.C.T. Liu, Circular dislocation pile-ups, Philos. Mag. 15 (1967), pp. 1059–1063.10.1080/14786436708221653
  • R.W. Armstrong and T.R. Smith, Dislocation pile-up predictions for the strength properties of ultrafine grain size fcc metals, in Processing and Properties of Nanocrystalline Materials, C. Suryanarayana, J. Singh, and F.H. Froes, eds., TMS-AIME, Warrendale, PA, 1996, pp. 345–354.
  • P. Gu, M. Dao, and Y.T. Zhu, Strengthening at nanoscaled coherent twin boundary in f.c.c. metals, Philos. Mag. 94 (2014), pp. 1249–1262.10.1080/14786435.2014.885138
  • H.J. Choi, S.W. Lee, J.S. Park, and D.H. Bae, Positive deviation from a Hall–Petch relation in nanocrystalline aluminum, (JPN) Mater. Trans. 50 (2009), pp. 640–643.
  • Y.V.R.K. Prasad and R.W. Armstrong, Polycrystal versus single crystal strain rate sensitivity of cadmium, Philos. Mag. 29 (1974), pp. 1421–1425.10.1080/14786437408226196
  • P. Rodriguez, Grain size dependence of the activation parameters for plastic deformation: Influence of crystal structure, slip system and rate controlling dislocation mechanism, Metall. Mater. Trans. A 35 (2004), pp. 2697–2705.10.1007/s11661-004-0215-4
  • A.S. Khan, Y.S. Suh, X. Chen, L. Takacs, and H. Zhang, Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling, Int. J. Plast. 22 (2006), pp. 195–209.10.1016/j.ijplas.2004.07.008
  • J. Xu, J. Li, L. Shi, D. Shan, and B. Guo, Effects of temperature, strain rate and specimen size on the deformation behaviors at micro/meso-scale in ultrafine-grained pure Al, Mater. Charact. 109 (2015), pp. 181–188.10.1016/j.matchar.2015.10.003
  • R.W. Armstrong, Hall–Petch k dependencies in nanopolycrystals, (UK) Emerg. Mater. Res. 3 (2014), pp. 246–251.
  • X.D. Zhang, N. Hansen, A. Godfrey, and X. Huang, Microstructural evolution, strengthening mechanisms and strength-structure relationship in cold-drawn pearlitic steel wire, in Nanometals – Status and perspective, in 33rd Risö International Symposium on Materials Science, S. Faester, N. Hansen, X. Huang, D. Juul Jensen, and B. Ralph, eds., Technical University of Denmark, Roskilde Campus, 2012, pp. 407–416.
  • B. Jiang and S. Zhang, The effects of strain rate and grain size on nanocrystalline materials: A theoretical prediction, Mater. Des. 87 (2015), pp. 49–52.10.1016/j.matdes.2015.08.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.