630
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Magnetocaloric and magnetoresistance properties in Co-based (Co0.402Fe0.201Ni0.067B0.227Si0.053Nb0.05)100−xCux (x=0–1) glassy alloys

, , &
Pages 3120-3130 | Received 11 Mar 2016, Accepted 17 Aug 2016, Published online: 01 Sep 2016

References

  • Z. Stokłosa, J. Rasek, P. Kwapuliński, G. Badura, G. Haneczok, L. Pająk, J. Lelątko, and A. Kolano-Burian, Magnetic, electrical and plastic properties of Fe76Nb2Si13B9, Fe75Ag1Nb2Si13B9 and Fe75Cu1Nb2Si13B9 amorphous alloys, J. Alloys Compd. 509 (2011), pp. 9050–9054.10.1016/j.jallcom.2011.05.070
  • L.A. Dobrzanski, M. Szindler, A. Drygala, and M.M. Szindler, Silicon solar cells with Al2O3 antireflection coating, Cent. E. J. Phys. 12 (2014), pp. 666–670.
  • W.H. Wang, Roles of minor additions in formation and properties of bulk metallic glasses, Prog. Mater Sci. 52 (2007), pp. 540–596.10.1016/j.pmatsci.2006.07.003
  • E.S. Park, W.T. Kim, and D.H. Kim, The effect of in addition on the glass-forming ability in Cu–Ti–Zr–Ni–Si metallic glasses, Mater. Trans. 45 (2004), pp. 2693–2696.10.2320/matertrans.45.2693
  • Y. Yokoyama, A. Kobayashi, K. Fukaura, and A. Inoue, Oxygen embrittlement and effect of the addition of Ni element in a bulk amorphous Zr–Cu–Al alloy, Mater. Trans. 43 (2002), pp. 571–574.10.2320/matertrans.43.571
  • W.H. Wang, M.X. Pang, D.Q. Zhao, Y. Hu, and H.Y. Bai, Enhancement of the soft magnetic properties of FeCoZrMoWB bulk metallic glass by microalloying, J. Phys.: Condens. Matter 16 (2004), pp. 3719–3723.10.1088/0953-8984/16/21/020
  • A. Rahman, Q. Luo, Y. Lu, and J. Shen, Recurring effects of Cu addition on magnetic properties in Fe-based bulk metallic glasses, J. Non-Cryst. Solids 422 (2015), pp. 1–5.10.1016/j.jnoncrysol.2015.04.041
  • L. Dou, H. Liu, L. Hou, L. Xue, W. Yang, Y. Zhao, C. Chang, and B. Shen, Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses, J. Magn. Magn. Mater. 358–359 (2014), pp. 23–26.10.1016/j.jmmm.2014.01.014
  • Y. Dong, Q. Man, H. Sun, B. Shen, S. Pang, T. Zhang, A. Makino, and A. Inoue, Glass-forming ability and soft magnetic properties of (Co0.6Fe0.3Ni0.1)67B22+xSi6−xNb5 bulk glassy alloys, J. Alloys Compd. 509 (2011), pp. S206–S209.10.1016/j.jallcom.2011.01.045
  • K. Sarlar and I. Kucuk, Glass forming ability and magnetic properties of Co(40.2 x)Fe(20.1+x)Ni6.7B22.7Si5.3Nb5 (x = 0–10), J. Magn. Magn. Mater. 374 (2015), pp. 607–610.10.1016/j.jmmm.2014.08.060
  • K.A. Gschneidner, Jr. and V.K. Pecharsky, Thirty years of near room temperature magnetic cooling: Where we are today and future prospects, Int. J. Refrig. 31 (2008), pp. 945–961.10.1016/j.ijrefrig.2008.01.004
  • J. Li, J.Y. Law, J. Huo, A. He, Q. Mana, C. Chang, H. Mena, J. Wanga, X. Wanga, and R.-W. Li, Magnetocaloric effect of Fe–RE–B–Nb (RE=Tb, Ho or Tm) bulk metallic glasses with high glass-forming ability, J. Alloys Compd. 644 (2015), pp. 346–349.
  • M. Zhang, J. Li, F. Kong, and J. Liu, Magnetic properties and magnetocaloric effect of FeCrNbYB metallic glasses with high glass-forming ability, Intermetallics 59 (2015), pp. 18–22.10.1016/j.intermet.2014.12.005
  • J. Huo, L. Huo, H. Men, X. Wang, A. Inoue, J. Wang, C. Chang, and R.-W. Li, The magnetocaloric effect of Gd-Tb-Dy-Al-M (M = Fe, Co and Ni) high-entropy bulk metallic glasses, Intermetallics 58 (2015), pp. 31–35.10.1016/j.intermet.2014.11.004
  • C. Wu, P. Yu, and L. Xia, Glass forming ability and magnetic properties of a Gd55Ni25Al18Zn2 bulk metallic glass, J. Non-Cryst. Solids 422 (2015), pp. 23–25.10.1016/j.jnoncrysol.2015.04.042
  • X.C. Zhong, H.C. Tian, S.S. Wang, Z.W. Liu, Z.G. Zheng, and D.C. Zeng, Thermal, magnetic and magnetocaloric properties of Fe80-xMxB10Zr9Cu1 (M = Ni, Ta; x = 0, 3, 5) amorphous alloys, J. Alloys Compd. 633 (2015), pp. 188–193.10.1016/j.jallcom.2015.02.037
  • A. Boutahar, H. Lassri, E.K. Hlil, and D. Fruchart, Critical behavior and its correlation with magnetocaloric effect in amorphous Fe80-xVxB12Si8 (x = 8, 10 and 13.7) alloys, J. Magn. Magn. Mater. 398 (2016), pp. 26–31.10.1016/j.jmmm.2015.08.121
  • Q. Luo, M. Tang, and J. Shen, Tuning the magnetocaloric response of Er-based metallic glasses by varying structural order in disorder, J. Magn. Magn. Mater. 401 (2016), pp. 406–411.10.1016/j.jmmm.2015.10.063
  • E. Yüzüak, I. Dincer, Y. Elerman, I. Dumkowc, B. Heger, and S. Yuce Emre, Enhancement of magnetocaloric effect in CoMn0.9Fe0.1Ge alloy, J. Alloys Compd. 641 (2015), pp. 69–73.10.1016/j.jallcom.2015.04.062
  • J. Zhang, G. Shan, Z. Zheng, and C.H. Shek, Structure and magnetic behaviors of Gd6FeBi2 compound, Intermetallics 68 (2016), pp. 51–56.10.1016/j.intermet.2015.07.013
  • J. Li, J.Y. Law, H. Ma, A. He, Q. Man, H. Mena, J. Huo, C. Chang, X. Wang, and R.-W. Li, Magnetocaloric effect in Fe–Tm–B–Nb metallic glasses near room temperature, J. Non-Cryst. Solids 425 (2015), pp. 114–117.10.1016/j.jnoncrysol.2015.06.002
  • J. Li, J. Huo, J. Law, C. Chang, J. Du, Q. Man, X. Wang, and R.-W. Li, Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature, J. Appl. Phys. 116 (2014), p. 063902.10.1063/1.4892431
  • B. Podmiljsak, J.H. Kim, P.J. McGuiness, and S. Kobe, Influence of Ni on the magnetocaloric effect in Nanoperm-type soft-magnetic amorphous alloys, J. Alloys Compd. 591 (2014), pp. 29–33.10.1016/j.jallcom.2013.12.150
  • L. Xia, K.C. Chan, M.B. Tang, and Y.D. Dong, Large magnetic entropy change and adiabatic temperature rise of a Gd55Al20Co20Ni5 bulk metallic glass, J. Appl. Phys. 115 (2014), p. 223904.10.1063/1.4882735
  • P. Yu, N.Z. Zhang, Y.T. Cui, L. Wen, Z.Y. Zeng, and L. Xia, Achieving an enhanced magneto-caloric effect by melt spinning a Gd55Co25Al20 bulk metallic glass into amorphous ribbons, J. Alloys Compd. 655 (2016), pp. 353–356.10.1016/j.jallcom.2015.09.205
  • V.K. Pecharsky and K.A. Gschneidner Jr, Giant magnetocaloric effect in Gd5(Si2Ge2), Phys. Rev. Lett. 78 (1997), pp. 4494–4497.10.1103/PhysRevLett.78.4494
  • V. Franco, J.S. Blazquez, B. Ingale, and A. Conde, The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models, Annu. Rev. Mater. Res. 42 (2012), pp. 305–342.10.1146/annurev-matsci-062910-100356
  • S. Gama, A.A. Coelho, A. de Campos, A.M.G. Carvalho, F.C.G. Gandra, and P.J. von Ranke, Pressure-induced colossal magnetocaloric effect in MnAs, Phys. Rev. Lett. 93 (2004), pp. 237202 (1–4).10.1103/PhysRevLett.93.237202
  • O. Tegus, E. Bruck, K.H.J. Buschow, and F.R. de Boer, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature 415 (2002), pp. 150–152.10.1038/415150a
  • J.D. Dong, A.R. Yan, and J. Liu, Microstructure and magnetocaloric properties of melt-extracted La–Fe–Si microwires, J. Magn. Magn. Mater. 357 (2014), pp. 73–76.10.1016/j.jmmm.2014.01.031
  • L. Huang, D.Y. Cong, L. Ma, Z.H. Nie, M.G. Wang, Z.L. Wang, H.L. Suo, Y. Ren, and Y.D. Wang, Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy, J. Alloys Compd. 647 (2015), pp. 1081–1085.10.1016/j.jallcom.2015.06.175
  • S. Legvold, Rare earth metals and alloys, in Handbook of Magnetic Materials, E.P. Wohlfarth, ed., North-Holland Publishing Company, Amsterdam, 1980, p. 189.
  • T. Bitoh, A. Makino, and A. Inoue, Origin of Low Coercivity of Fe-(Al, Ga)-(P, C, B, Si, Ge) Bulk Glassy Alloys, Mater. Trans. 44 (2003), p. 2020e4.
  • T. Hashimoto, T. Numasawa, M. Shino, and T. Okada, Magnetic refrigeration in the temperature range from 10 K to room temperature: The ferromagnetic refrigerants, Cryogenics 21 (1981), pp. 647–653.10.1016/0011-2275(81)90254-X
  • K.A. Gschneidner, Jr., V.K. Pecharsky, Magnetocaloric materials, Annu. Rev. Mater. Sci. 30 (2000), p. 387e429.
  • V. Franco and A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials, Int. J. Refrig. 33 (2010), p. 465e73.
  • J. Choi, J. Choi, S. Choi, J. Kim, and S. Cho, Large electrical resistance variation at low temperature in transition metal-doped Ge single crystals, Mater. Trans. 56 (2015), pp. 1362–1364.10.2320/matertrans.MA201571

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.