703
Views
26
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Micro-mechanical aspects of texture evolution in nickel and nickel–cobalt alloys: role of stacking fault energy

, &
Pages 3177-3199 | Received 27 Dec 2015, Accepted 13 Aug 2016, Published online: 19 Sep 2016

References

  • J.A. Venables, The nucleation and propagation of deformation twins, J. Phys. Chem. Solids. 25 (1964), pp. 693–700.10.1016/0022-3697(64)90178-7
  • L. Rémy and A. Pineau, Twinning and strain-induced fcc → hcp transformation on the mechanical properties of Co–Ni–Cr–Mo alloys, Mater. Sci. Eng. 26 (1976), pp. 123–132.10.1016/0025-5416(76)90234-2
  • T. Leffers and R.K. Ray, The brass-type texture and its deviation from the copper-type texture, Prog. Mater. Sci. 54 (2009), pp. 351–396.10.1016/j.pmatsci.2008.09.002
  • G. Wassermann, Der einfluss mechanischer zwillingbildung auf die entstehung der walztexturen kubisch flächenzentrierter metalle [The effect of mechanical twinning on the formation of rolling textures in face-centered-cubic metals], Z. Metallkd. 54 (1963), pp. 61–65.
  • R.E. Smallman and D. Green, The dependence of rolling texture on stacking fault energy, Acta Metall. 12 (1964), pp. 145–154.10.1016/0001-6160(64)90182-8
  • I.L. Dillamore and W.T. Roberts, Rolling textures in F.C.C. and B.C.C. metals, Acta Metall. 12 (1964), pp. 281–293.
  • H. Hu, R.S. Cline, and S.R. Goodman, Deformation textures of metals, Recryst. Grain Growth Textures (1966), pp. 295–374.
  • J. Hirsch, K. Lücke, and M. Hatherly, Mechanism of deformation and development of rolling textures in polycrystalline FCC metals. 3. The influence of slip inhomogeneities and twinning, Acta Metall. 36 (1988), pp. 2905–2927.10.1016/0001-6160(88)90174-5
  • R.K. Ray, Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys, Acta Metall. Mater. 43 (1995), pp. 3861–3872.10.1016/0956-7151(95)90169-8
  • P. Houtte, Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta Metall. 26 (1978), pp. 591–604.10.1016/0001-6160(78)90111-6
  • T. Leffers and P. Kayworth, Twinning and texture, e Colloque Européen sur les Textures de Déformation et de Recristallisation des Métaux et leurs Applications Industrielles, Paris (1973), pp. 149–171.
  • T. Leffers and J. Bilde-Sørensen, Intra-and intergranular heterogeneities in the plastic deformation of brass during rolling, Acta Metall. Mater. 38 (1990), pp. 1917–1926.10.1016/0956-7151(90)90303-X
  • T. Leffers, The brass-type texture once again, Proc. ICOTOM 11(1) (1996), pp. 299–306.
  • M. Miraglia, P. Dawson, and T. Leffers, On the influence of mechanical environment on the emergence of brass textures in FCC metals, Acta Mater. 55 (2007), pp. 799–812.10.1016/j.actamat.2006.07.017
  • K. Wierzbanowski, M. Wroński, and T. Leffers, FCC rolling textures reviewed in the light of quantitative comparisons between simulated and experimental textures, Crit. Rev. Solid State Mater. Sci. 39 (2014), pp. 391–422.10.1080/10408436.2014.899485
  • M.R. Barnett, A rationale for the strong dependence of mechanical twinning on grain size, Scr. Mater. 59 (2008), pp. 696–698.10.1016/j.scriptamat.2008.05.027
  • M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: A constitutive description, Acta Mater. 49 (2001), pp. 4025–4039.10.1016/S1359-6454(01)00300-7
  • J. Gil Sevillano, P. Van Houtte, and E. Aernoudt, The contribution of macroscopic shear bands to the rolling texture of FCC metals, Scr. Metall. 11 (1977), pp. 581–585.10.1016/0036-9748(77)90113-2
  • B.J. Duggan, M. Hatherly, W.B. Hutchinson, and P.T. Wakefield, Deformation structures and textures in cold-rolled 70:30 brass, Metal Sci. 12 (1978), pp. 343–351.10.1179/030634578790433909
  • W.B. Hutchinson, B.J. Duggan, and M. Hatherly, Development of deformation texture and microstructure in cold-rolled Cu-30Zn, Metals Technol. 6 (1979), pp. 398–403.10.1179/030716979803276598
  • E. El-Danaf, S.R. Kalidindi, R.D. Doherty, and C. Necker, Deformation texture transition in brass: Critical role of micro-scale shear bands, Acta Mater. 48 (2000), pp. 2665–2673.10.1016/S1359-6454(00)00050-1
  • S.R. Kalidindi, Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals, Int. J. Plast. 17 (2001), pp. 837–860.10.1016/S0749-6419(00)00071-1
  • J. Hirsch and K. Lücke, Mechanism of deformation and development of rolling textures in polycrystalline FCC metals.1. Description of rolling texture development in homogeneous CuZn alloys, Acta Metall. 36 (1988), pp. 2863–2882.10.1016/0001-6160(88)90172-1
  • O. Engler, Deformation and texture of copper-manganese alloys, Acta Mater. 48 (2000), pp. 4827–4840.10.1016/S1359-6454(00)00272-X
  • P. Gallagher, The influence of alloying, temperature, and related effects on the stacking fault energy, Metall. Mater. Trans. B 1 (1970), pp. 2429–2461.
  • D.A. Hughes, R.A. Lebensohn, H.R. Wenk, and A. Kumar, Stacking fault energy and microstructure effects on torsion texture evolution, Proc. R. Soc. A: Math. Phys.Eng. Sci. 456 (2000), pp. 921–953.10.1098/rspa.2000.0543
  • R. Madhavan, R.K. Ray, and S. Suwas, Texture transition in cold rolled nickel-40 wt.% cobalt alloy, Acta Mater. 74 (2014), pp. 151–164.10.1016/j.actamat.2014.03.066
  • R. Madhavan, R.K. Ray, and S. Suwas, New insights into the development of microstructure and deformation texture in nickel-60wt.% cobalt alloy, Acta Mater. 78 (2014), pp. 222–235.10.1016/j.actamat.2014.06.031
  • S. Suwas, A.K. Singh, K. Narasimha Rao, and T. Singh, Effect of modes of rolling on evolution of the texture in pure copper and some copper-base alloys. Part I: Rolling texture, Zeitschrift für Metallkunde 93 (2002), pp. 918–927.10.3139/146.020918
  • S. Suwas and A.K. Singh, Role of strain path change in texture development, Mater. Sci. Eng.: A 356 (2003), pp. 368–371.10.1016/S0921-5093(03)00149-7
  • N.P. Gurao, S. Sethuraman, and S. Suwas, Effect of strain path change on the evolution of texture and microstructure during rolling of copper and nickel, Mater. Sci. Eng.: A 528 (2011), pp. 7739–7750.10.1016/j.msea.2011.06.062
  • H. Schaeben, R. Hielscher, and F. Bachmann, Texture analysis with mtex–free and open source software toolbox, Solid State Phenom. 160 (2010), pp. 63–68.
  • A. Molinari, G. Canova, and S. Ahzi, A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall. 35 (1987), pp. 2983–2994.10.1016/0001-6160(87)90297-5
  • R.A. Lebensohn and C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metall. Mater. 41 (1993), pp. 2611–2624.10.1016/0956-7151(93)90130-K
  • C.N. Tomé and R.A. Lebensohn, VPSC 7c – User manual, (2009). Available at http://public.lanl.gov/lebenso/VPSC7c_manual.pdf
  • C.N. Tomé, R.A. Lebensohn, and U.F. Kocks, A model for texture development dominated by deformation twinning: Application to zirconium alloys, Acta Metall. Mater. 39 (1991), pp. 2667–2680.10.1016/0956-7151(91)90083-D
  • I.J. Beyerlein, L.S. Tóth, C.N. Tomé, and S. Suwas, Role of twinning on texture evolution of silver during equal channel angular extrusion, Philos. Mag. 87 (2007), pp. 885–906.10.1080/14786430601003866
  • L.S. Tóth and P. Van Houtte, Discretization techniques for orientation distribution functions, Textures Microstruct. 19 (1992), pp. 229–244.10.1155/TSM.19.229
  • I. Samajdar, B. Verlinden, L. Rabet, and P. Van Houtte, Recrystallization texture in a cold rolled commercial purity aluminum: On the plausible macro-and micro-mechanisms, Mater. Sci. Eng.: A 266 (1999), pp. 146–154.10.1016/S0921-5093(99)00022-2
  • W.C. Liu and J.G. Morris, Kinetics of the formation of the β fiber rolling texture in continuous cast AA 5xxx series aluminum alloys, Scr. Mater. 47 (2002), pp. 743–748.10.1016/S1359-6462(02)00195-1
  • Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Z. Horita, and T.G. Langdon, Influence of stacking fault energy on nanostructure formation under high pressure torsion, Mater. Sci. Eng.: A 410–411 (2005), pp. 188–193.10.1016/j.msea.2005.08.074
  • T. Leffers and A. Grum-Jensen, Development of rolling texture in copper and brass, Trans. Am. Inst. Min. Metall. Pet. Eng. 242 (1968), pp. 314–319.
  • J.S. Kallend and G.J. Davies, Development of texture in copper and copper-zinc alloys, Texture 1 (1972), pp. 51–69.10.1155/TSM.1.51
  • T. Leffers and D.J. Jensen, The early stages of the development of rolling texture in copper and brass, Textures Microstruct. 8 (1988), pp. 467–480.10.1155/TSM.8-9.467
  • J.V. Carstensen, R.K. Ray, and T. Leffers, Texture development in Ni-Co alloys rolled to moderate reductions, Mater. Sci. Forum 408 (2002), pp. 607–612.
  • A. Howie and P.R. Swann, Direct measurements of stacking-fault energies from observations of dislocation nodes, Philos. Mag. 6 (1961), pp. 1215–1226.10.1080/14786436108243372
  • W. Heye and G. Wasserman, The formation of the rolling textures in face-centered cubic metals by slip and twinning, Scr. Metall. 2 (1968), pp. 205–207.10.1016/0036-9748(68)90228-7
  • D. Kuhlmann-Wilsdorf and N. Hansen, Geometrically necessary, incidental and subgrain boundaries, Scr. Metall. Mater. 25 (1991), pp. 1557–1562.10.1016/0956-716X(91)90451-6
  • B. Bay, N. Hansen, D. Hughes, and D. Kuhlmann-Wilsdorf, Evolution of FCC deformation structures in polyslip, Acta Metall. Mater. 40 (1992), pp. 205–219.10.1016/0956-7151(92)90296-Q
  • Q. Liu and N. Hansen, Macroscopic and microscopic subdivison of a cold–rolled aluminium single crystal of cubic orientation, Proc. R. Soc. A: Math. Phys.Eng. Sci. 454 (1998), pp. 2555–2592.10.1098/rspa.1998.0271
  • A. Beaudoin Jr., H. Mecking, and U. Kocks, Development of localized orientation gradients in fcc polycrystals, Philos. Mag. A 73 (1996), pp. 1503–1517.10.1080/01418619608242998
  • D. Raabe, Z. Zhao, S.-J. Park, and F. Roters, Theory of orientation gradients in plastically strained crystals, Acta Mater. 50 (2002), pp. 421–440.10.1016/S1359-6454(01)00323-8
  • U.F. Kocks, J.D. Embury, J.D. Cotton, S.R. Chen, A.J. Beaudoin, S.I. Wright, and A.D. Rollett, Advances in Hot Deformation Textures and Microstructures, The Metallurgical Society of AIME, Warrendale (PA) 1994, p. 459.
  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.
  • Y. Zhou, L.S. Tóth, and K.W. Neale, On the stability of the ideal orientations of rolling textures for FCC polycrystals, Acta Metall. Mater. 40 (1992), pp. 3179–3193.10.1016/0956-7151(92)90481-S
  • K. Kashihara and J.A. Wert, The effect of a grain boundary on deformation in an aluminum bicrystal with a common tensile axis of [1 0 0], Mater. Trans. 47 (2006), pp. 233–238.10.2320/matertrans.47.233
  • N.P. Gurao and S. Suwas, Deformation behaviour at macro- and nano-length scales: The development of orientation gradients, Mater. Lett. 99 (2013), pp. 81–85.10.1016/j.matlet.2013.02.074
  • B. Verlinden, J.H. Driver, I. Samajdar, and R.D. Doherty, Thermo-mechanical processing of metallic materials, Vol. 11, Elsevier, Amsterdam, 2007.
  • K. Morii, H. Mecking, and Y. Nakayama, Development of shear bands in FCC single crystals, Acta Metall. 33 (1985), pp. 379–386.10.1016/0001-6160(85)90080-X
  • K. Lücke and H.P. Stüwe, On the theory of impurity controlled grain boundary motion, Acta Metall. 19 (1971), pp. 1087–1099.10.1016/0001-6160(71)90041-1
  • A. Korbel, J.D. Embury, M. Hatherly, P.L. Martin, and H.W. Erbsloh, Microstructural aspects of strain localization in Al-Mg alloys, Acta Metall. 34 (1986), pp. 1999–2009.10.1016/0001-6160(86)90259-2
  • A.A. Ridha and W.B. Hutchinson, Recrystallisation mechanisms and the origin of cube texture in copper, Acta Metall. 30 (1982), pp. 1929–1939.10.1016/0001-6160(82)90033-5
  • A. Duckham, R.D. Knutsen, and O. Engler, Influence of deformation variables on the formation of copper-type shear bands in Al-1Mg, Acta Mater. 49 (2001), pp. 2739–2749.10.1016/S1359-6454(01)00166-5
  • I.L. Dillamore, J.G. Roberts, and A.C. Bush, Occurrence of shear bands in heavily rolled cubic metals, Metal Sci. 13 (1979), pp. 73–77.10.1179/msc.1979.13.2.73
  • U. Kocks and H. Chandra, Slip geometry in partially constrained deformation, Acta Metall. 30 (1982), pp. 695–709.10.1016/0001-6160(82)90119-5
  • P. Wagner, O. Engler, and K. Lücke, Formation of Cu-type shear bands and their influence on deformation and texture of rolled f.c.c. {1 1 2}〈1 1 1〉 single crystals, Acta Metall. Mater. 43 (1995), pp. 3799–3812.10.1016/0956-7151(95)90164-7
  • J.W. Christian and S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995), pp. 1–157.10.1016/0079-6425(94)00007-7
  • A. Malin and M. Hatherly, Microstructure of cold-rolled copper, Metal Sci. 13 (1979), pp. 463–472.10.1179/030634579790438363
  • C. Donadille, R. Valle, P. Dervin, and R. Penelle, Development of texture and microstructure during cold-rolling and annealing of FCC alloys: Example of an austenitic stainless steel, Acta Metall. 37 (1989), pp. 1547–1571.10.1016/0001-6160(89)90123-5
  • Y. Lü, D.A. Molodov, and G. Gottstein, Correlation between microstructure and texture development in a cold-rolled TWIP steel, ISIJ Int. 51 (2011), pp. 812–817.
  • N.P. Gurao, P. Kumar, B. Bhattacharya, A. Haldar, and S. Suwas, Evolution of crystallographic texture and microstructure during cold rolling of twinning-induced plasticity (TWIP) steel: Experiments and Simulations, Metall. Mater. Trans. A 43 (2012), pp. 5193–5201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.