361
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Ideal shear banding in metallic glass

, , , , &
Pages 3159-3176 | Received 21 Jan 2016, Accepted 22 Aug 2016, Published online: 01 Sep 2016

References

  • T.H. Courtney, Mechanical Behavior of Materials, McGraw-Hill Company, New York, 2000.
  • F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall. 25 (1977), pp. 407–415.10.1016/0001-6160(77)90232-2
  • A.S. Argon, Plastic deformation in metallic glasses, Acta Metall. 27 (1979), pp. 47–58.10.1016/0001-6160(79)90055-5
  • C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater. 55 (2007), pp. 4067–4109.10.1016/j.actamat.2007.01.052
  • A.L. Greer, Y.Q. Cheng, and E. Ma, Shear bands in metallic glasses, Mat. Sci. Eng. R 74 (2013), pp. 71–132.10.1016/j.mser.2013.04.001
  • C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue, Test environments and mechanical properties of Zr-base bulk amorphous alloys, Metall. Mater. Trans. A 29 (1998), pp. 1811–1820.10.1007/s11661-998-0004-6
  • F. Spaepen, Must shear band be hot?, Nat. Mater. 5 (2006), pp. 7–8.10.1038/nmat1552
  • K. Georgarakis, M. Aljerf, Y. Li, A. LeMoulec, F. Charlot, A.R. Yavari, K. Chornokhvostenko, E. Tabachnikova, G.A. Evangelakis, D.B. Miracle, A.L. Greer, and T. Zhang, Shear band melting and serrated flow in metallic glasses, Appl. Phys. Lett. 93 (2008), p. 031907.10.1063/1.2956666
  • J.J. Lewandowski and A.L. Greer, Temperature rise at shear bands in metallic glasses, Nat. Mater. 5 (2006), pp. 15–18.10.1038/nmat1536
  • W.J. Wright, M.W. Samale, T.C. Hufnagel, M.M. LeBlanc, and J.N. Florando, Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass, Acta Mater. 57 (2009), pp. 4639–4648.10.1016/j.actamat.2009.06.013
  • W.J. Wright, R.R. Byer, and X.J. Gu, High–speed imaging of a bulk metallic glass during uniaxial compression, Appl. Phys. Lett. 102 (2013), pp. 241920.10.1063/1.4811744
  • S.V. Ketov and D.V. Louzguine-Luzgin, Localized shear deformation and softening of bulk metallic glass: Stress or temperature driven?, Sci. Rep. 3 (2013), pp. 2798.
  • S.K. Slaughter, F. Kertis, E. Deda, X. Gu, W.J. Wright, and T.C. Hufnagel, Shear bands in metallic glasses are not necessarily hot, APL Mater. 2 (2014), p. 096110.10.1063/1.4895605
  • Y.Q. Cheng, Z. Han, Y. Li, and E. Ma, Cold versus hot shear banding in bulk metallic glass, Phys. Rev. B 80 (2009), pp. 134115.10.1103/PhysRevB.80.134115
  • Z. Han, W.F. Wu, Y. Li, Y.J. Wei, and H.J. Gao, An instability index of shear band for plasticity in metallic glasses, Acta Mater. 57 (2009), pp. 1367–1372.10.1016/j.actamat.2008.11.018
  • Y. Yang, J.C. Ye, J. Lu, P.K. Liaw, and C.T. Liu, Characteristic length scales governing plasticity/brittleness of bulk metallic glasses at ambient temperature, Appl. Phys. Lett. 88 (2010), pp. 221911.
  • B.A. Sun, S. Pauly, J. Tan, M. Stoica, W.H. Wang, U. Kühn, J. Eckert, and J. Eckert, Serrated flow and stick-slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass, Acta Mater. 60 (2012), pp. 4160–4171.10.1016/j.actamat.2012.04.013
  • Z. Han, H. Yang, W.F. Wu, and Y. Li, Invariant critical stress for shear banding in a bulk metallic glass, Appl. Phys. Lett. 93 (2008), pp. 231912.10.1063/1.3048869
  • S.X. Song, H. Bei, J. Wadsworth, and T.G. Nieh, Flow serration in a Zr-based bulk metallic glass in compression at low strain rates, Intermetallics 16 (2008), pp. 813–818.10.1016/j.intermet.2008.03.007
  • J.G. Wang, K.C. Chan, J.C. Fan, L. Xia, G. Wang, and W.H. Wang, Buckling of metallic glass bars, J. Non-Cryst. Solids 387 (2014), pp. 1–5.10.1016/j.jnoncrysol.2013.12.008
  • R.T. Qu, Z.Q. Liu, G. Wang, and Z.F. Zhang, Progressive shear band propagation in metallic glasses under compression, Acta Mater. 91 (2015), pp. 19–33.10.1016/j.actamat.2015.03.026
  • W.L. Johnson and K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence, Phys. Rev. Lett. 95 (2005), pp. 195501.10.1103/PhysRevLett.95.195501
  • J. Ding, S. Patinet, M.L. Falk, Y. Cheng, and E. Ma, Soft spots and their structural signature in a metallic glass, Proc. Nat. Acad. Sci. 111 (2014), pp. 14052–14056.10.1073/pnas.1412095111
  • Z. Lu, W. Jiao, W.H. Wang, and H.Y. Bai, Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses, Phys. Rev. Lett. 113 (2014), p. 045501.10.1103/PhysRevLett.113.045501
  • Y. Bai and B. Dodd, Adiabatic shear localization: Occurrence, Theories, and Applications, Pergamon, Oxford, 1992.
  • M.A. Meyers, Dynamic Behavior of Materials, John Wiley & Sons, New York, 1994.10.1002/9780470172278
  • H. Bei, S. Xie, and E.P. George, Softening caused by profuse shear banding in a bulk metallic glass, Phys. Rev. Lett. 96 (2006), pp. 105503.10.1103/PhysRevLett.96.105503
  • J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert, ‘Work-hardenable’ ductile bulk metallic glass, Phys. Rev. Lett. 94 (2005), pp. 205501.10.1103/PhysRevLett.94.205501
  • H. Li, C. Fan, K. Tao, H. Choo, and P.K. Liaw, Compressive behavior of a Zr-based metallic glass at cryogenic temperatures, Adv. Mater. 18 (2006), pp. 752–754.10.1002/(ISSN)1521-4095
  • Z.F. Zhang, G. He, J. Eckert, and L. Schultz, Fracture mechanisms in bulk metallic glassy materials, Phys. Rev. Lett. 91 (2003), p. 045505.10.1103/PhysRevLett.91.045505
  • H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press, London, 1959.
  • W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater Sci. 57 (2012), pp. 487–656.10.1016/j.pmatsci.2011.07.001
  • M. Yamasaki, S. Kagao, Y. Kawamura, and K. Yoshimura, Thermal diffusivity and conductivity of supercooled liquid in Zr41Ti14Cu12Ni10Be23 metallic glass, Appl. Phys. Lett. 84 (2004), pp. 4653–4655.10.1063/1.1759768
  • M. Zhao, M. Li, and Y.F. Zheng, Assessing the shear band velocity in metallic glasses using a coupled thermo-mechanical model, Philos. Mag. Lett. 91 (2011), pp. 705–712.10.1080/09500839.2011.609150
  • J.N. Israelachvili, P.M. Mcguiggan, and A.M. Homola, Dynamic properties of molecularly thin liquid films, Science 240 (1988), pp. 189–191.10.1126/science.240.4849.189
  • J. Lu, G. Ravichandran, and W.L. Johnson, Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures, Acta Mater. 51 (2003), pp. 3429–3443.10.1016/S1359-6454(03)00164-2
  • A. Bhattacharyya, G. Singh, K.E. Prasad, R. Narasimhan, and U. Ramamurty, On the strain rate sensitivity of plastic flow in metallic glasses, Mat. Sci. Eng.: A 625 (2015), pp. 245–251.10.1016/j.msea.2014.12.004
  • D. Pan, A. Inoue, T. Sakurai, and M.W. Chen, Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses, Proc. Nat. Acad. Sci. 105 (2008), pp. 14769–14772.10.1073/pnas.0806051105
  • W.L. Johnson, J. Lu, and M.D. Demetriou, Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids – A self consistent dynamic free volume model, Intermetallics 10 (2002), pp. 1039–1046.10.1016/S0966-9795(02)00160-7
  • F. Shimizu, S. Ogata, and J. Li, Yield point of metallic glass, Acta Mater. 54 (2006), pp. 4293–4298.10.1016/j.actamat.2006.05.024
  • H.B. Yu, W.H. Wang, J.L. Zhang, C.H. Shek, and H.Y. Bai, Statistic analysis of the mechanical behavior of bulk metallic glasses, Adv. Eng. Mater. 11 (2009), pp. 370–373.10.1002/adem.v11:5
  • J. Schroers, A. Masuhr, W.L. Johnson, and R. Busch, Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid, Phys. Rev. B 60 (1999), pp. 11855.10.1103/PhysRevB.60.11855
  • W.L. Johnson, G. Kaltenboeck, M.D. Demetriou, J.P. Schramm, X. Liu, K. Samwer, C.P. Kim, and D.C. Hofmann, Beating crystallization in glass-forming metals by millisecond heating and processing, Science 332 (2011), pp. 828–833.10.1126/science.1201362
  • K.J. Dawson, L. Zhu, L. Yu, and M.D. Ediger, Anisotropic structure and transformation kinetics of vapor-deposited indomethacin glasses, J. Phys. Chem. B 115 (2011), pp. 455–463.10.1021/jp1092916
  • D. Klaumünzer, A. Lazarev, R. Maaß, F.H. Dalla Torre, A. Vinogradov, and J.F. Löffler, Probing shear-band initiation in metallic glasses, Physical Review Letters 107 (2011), pp. 185502.10.1103/PhysRevLett.107.185502
  • X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, and J.J. Lewandowski, Fracture of brittle metallic glasses: brittleness or plasticity, Phys. Rev. Lett. 94 (2005), pp. 125510.10.1103/PhysRevLett.94.125510
  • G. Wang, D.Q. Zhao, H.Y. Bai, M.X. Pan, A.L. Xia, B.S. Han, X.K. Xi, Y. Wu, and W.H. Wang, Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses, Phys. Rev. Lett. 98 (2007), pp. 235501.10.1103/PhysRevLett.98.235501
  • Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, and J.F. Sun, Mechanical performance and fracture behavior of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass, J. Mater. Res. 22 (2007), pp. 358–363.10.1557/jmr.2007.0038
  • M.Q. Jiang, G. Wilde, J.H. Chen, C.B. Qu, S.Y. Fu, F. Jiang, and L.H. Dai, Cryogenic-temperature-induced transition from shear to dilatational failure in metallic glasses, Acta Mater. 77 (2014), pp. 248–257.10.1016/j.actamat.2014.05.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.