730
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructural properties and local atomic structures of cobalt oxide nanoparticles synthesised by mechanical ball-milling process

, &
Pages 3211-3226 | Received 04 Feb 2015, Accepted 27 Aug 2016, Published online: 16 Sep 2016

References

  • N.S. Lewis and D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. 103 (2006), pp. 15729–15735.10.1073/pnas.0603395103
  • A.J. Bard and M.A. Fox, Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen, Acc. Chem. Res. 28 (1995), pp. 141–145.10.1021/ar00051a007
  • M. Winter and R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev. 104 (2004), pp. 4245–4270.10.1021/cr020730k
  • A.A. Gewirth and M.S. Thorum, Electroreduction of dioxygen for fuel-cell applications: Materials and challenges, Inorg Chem. 49 (2010), pp. 3557–3566.10.1021/ic9022486
  • M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995), pp. 69–96.10.1021/cr00033a004
  • P.V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev. 93 (1993), pp. 267–300.10.1021/cr00017a013
  • J. Livage, M. Henry, and C. Sanchez, Sol–gel chemistry of transition metal oxides, Prog. Solid State Chem. 18 (1988), pp. 259–341.10.1016/0079-6786(88)90005-2
  • J. Wöllenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Böttner, and I. Eisele, Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures, Sens. Actuators, A 93 (2003), pp. 442–448.10.1016/S0925-4005(03)00168-0
  • F. Zheng, S. Alayoglu, J. Guo, V. Pushkarev, Y. Li, P.-A. Glans, J.-L. Chen, and G. Somorjai, In-situ X-ray absorption study of evolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H2) and oxidizing (O2 ) environments, Nano Lett. 11 (2011), pp. 847–853.10.1021/nl104209c
  • N. Tahir, S.T. Hussain, M. Usman, S.K. Hasanain, and A. Mumtaz, Effect of vanadium doping on structural, magnetic and optical properties of ZnO nanoparticles, Appl. Surf. Sci. 255 (2009), pp. 8506–8510.10.1016/j.apsusc.2009.06.003
  • J.L.C. Costa-Krämer, F. Briones, J.F. Fernández, A.C. Caballero, M. Villegas, M. Díaz, M.A. García, and A. Hernando, Nanostructure and magnetic properties of the MnZnO system, a room temperature magnetic semiconductor? Nanotechnology 16 (2005), pp. 214–218.10.1088/0957-4484/16/2/006
  • D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, A.K. Rajarajan, T.K. Nath, A.K. Das, I. Dasgupta, and G.P. Das, Ferromagnetism in Fe-doped ZnO nanocrystals: Experiment and theory, Phys. Rev. B 75 (2007), pp. 144404-1–144404-14.
  • Y.K. Lakshmi, K. Srinivas, B. Sreedhar, M.M. Raja, M. Vithal, and P.V. Reddy, Structural, optical and magnetic properties of nanocrystalline Zn0.9Co0.1O-based diluted magnetic semiconductors, Mater. Chem. Phys. 113 (2009), pp. 749–755.10.1016/j.matchemphys.2008.08.021
  • D.B. Buchholz, R.P.H. Chang, J.-Y. Song, and J.B. Ketterson, Room-temperature ferromagnetism in Cu-doped ZnO thin films, Appl. Phys. Lett. 87 (2005), pp. 082504-1–082504-3.
  • H.-K. Lin, H.-C. Chiu, H.-C. Tsai, S.-H. Chien, and C.-B. Wang, Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide, Catal. Lett. 88 (2003), pp. 169–174.10.1023/A:1024013822986
  • H. Yamaura, K. Moriya, N. Miura, and N. Yamazoe, Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide, Sens. Actuators, B 65 (2000), pp. 39–41.10.1016/S0925-4005(99)00456-6
  • H.T. Zhu, J. Luo, J.K. Liang, G.H. Rao, J.B. Li, J.Y. Zhang, and Z.M. Du, Synthesis and magnetic properties of antiferromagnetic Co3O4 nanoparticles, Physica B 403 (2008), pp. 3141–3145.10.1016/j.physb.2008.03.024
  • P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000), pp. 496–499.
  • C.-B. Wang, H.-K. Lin, and C.-W. Tang, Thermal characterization and microstructure change of cobalt oxides, Catal. Lett. 94 (2004), pp. 69–74.10.1023/B:CATL.0000019333.73968.c6
  • C.-W. Tang, C.-B. Wang, and S.-H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS, Thermochimica Acta 473 (2008), pp. 68–73.10.1016/j.tca.2008.04.015
  • N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, London, 1997.
  • R.N. Singh, J.-F. Koenig, G. Poilleret, and P. Chartier, Electrochemical studies on protective thin Co[sub 3]O[sub 4] and NiCo[sub 2]O[sub 4] films prepared on titanium by spray pyrolysis for oxygen evolution, J. Electrochem. Soc. 137 (1990), pp. 1408–1413.10.1149/1.2086682
  • Y. Xuan, R. Liu, and Y.Q. Jia, Synthesis of a new series of compounds RE2Co2/3Nb4/3O7 and stability field diagram of RE2B2/3′B4/3″O7 pyrochlore compounds, Mater Chem. Phys. 53 (1998), pp. 256–261.10.1016/S0254-0584(98)00002-9
  • M.E. El Baydi, G. Poillerat, J.-L. Rehspringer, J.L. Gautier, J.-F. Koenig, and P.A. Chartier, A Sol–Gel route for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium, J. Solid State Chem. 109 (1994), pp. 281–288.10.1006/jssc.1994.1105
  • G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, and J. Yao, Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods, J. Phys. Chem. C 113 (2009), pp. 4357–4361.10.1021/jp8106149
  • Y. Dong, K. He, L. Yin, and A. Zhang, A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties, Nanotechnology 18 (2007), pp. 435602-1–435602-6.
  • S. Farhadi, J. Safabakhsh, and P. Zaringhadam, Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles, J.Nanostruct. Chem. 3 (2013), pp. 1–9.
  • J.H. Sinfelt, Bimetallic catalysts: Discoveries, concepts, and applications, Wiley-Interscience, New York, 1983.
  • A.I. Frenkel, C.W. Hills, and R.G. Nuzzo, A view from the inside: Complexity in the atomic scale ordering of supported metal nanoparticles, J. Phys. Chem. B 105 (2001), pp. 12689–12703.10.1021/jp012769j
  • G. Cheng and T. Guo, Surface segregation in Ni/Co bimetallic nanoparticles produced in single-walled carbon nanotube synthesis, J. Phys. Chem. B 106 (2002), pp. 5833–5839.10.1021/jp025530r
  • M.S. Nashner, A.I. Frenkel, D. Somerville, C.W. Hills, J.R. Shapley, and R.G. Nuzzo, Core shell inversion during nucleation and growth of bimetallic Pt/Ru nanoparticles, J. Am. Chem. Soc. 120 (1998), pp. 8093–8101.10.1021/ja980638z
  • C.W. Hills, M.S. Nashner, A.I. Frenkel, J.R. Shapley, and R.G. Nuzzo, Carbon support effects on bimetallic Pt−Ru nanoparticles formed from molecular precursors, Langmuir 15 (1999), pp. 690–700.10.1021/la980921b
  • P.N. Floriano, C.O. Noble, J.M. Schoonmaker, E.D. Poliakoff, and R.L. McCarley, Cu(0) Nanoclusters derived from poly(propylene imine) dendrimer complexes of Cu(II), J. Am. Chem. Soc. 123 (2001), pp. 10545–10553.10.1021/ja010549d
  • G. Cheng, J.D. Carter, and T. Guo, Investigation of Co nanoparticles with EXAFS and XANES, Chem. Phys. Lett. 400 (2004), pp. 122–127.10.1016/j.cplett.2004.10.095
  • B. Ravel and M. Newville, ATHENA ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT, Synchroton Rad. 12 (2005), pp. 537–541.
  • B. Ravel, ATOMS: Crystallography for the X-ray absorption spectroscopist, J. Synchroton Rad. 8 (2001), pp. 314–316.10.1107/S090904950001493X
  • A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), pp. 3098–3100.10.1103/PhysRevA.38.3098
  • S.H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58 (1980), pp. 1200–1211.10.1139/p80-159
  • C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), pp. 785–789.10.1103/PhysRevB.37.785
  • R. Ahlrichs and P.R. Taylor, The choice of Gaussian basis sets for molecular electronic structure calculations, J. Chim. Phys. 78 (1981), pp. 315–324.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian Inc., Gaussian 09, Revision A.02 2009, Wallingford, CT, 2009.
  • T. Bredow and A.R. Gerson, Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO, Phys. Rev. B 61 (2000), pp. 5194–5201.10.1103/PhysRevB.61.5194
  • A. Walsh, S.-H. Wei, Y. Yan, M.M. Al-Jassim, and J.A. Turner, Structural, magnetic, and electronic properties of the Co–Fe–Al oxide spinel system: Density-functional theory calculations, Phys. Rev. B 76 (2007), pp. 165119-1–165119-9.
  • V. Uvarov and I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials, Mater. Charact. 85 (2013), pp. 111–123.10.1016/j.matchar.2013.09.002
  • J.C.J. Bart, Near-edge X-ray absorption spectroscopy in catalysis, Adv. Catal. 34 (1986), pp. 203–296.
  • D.C. Koningsberger and R. Prins, X-ray Absorption: Principles, applications, techniques of EXAFS, SEXAFS and XANES, Wiley and Sons, New York, 1988.
  • M.L. Peterson, G.E. Brown, G.A. Parks, and C.L. Stein, Differential redox and sorption of Cr (III/VI) on natural silicate and oxide minerals: EXAFS and XANES results, Geochim. Cosmochim. Acta 61 (1997), pp. 3399–3412.10.1016/S0016-7037(97)00165-8
  • M.F. Fernández-García, XANES analysis of catalytic systems under reaction conditions, Catal. Rev. Sci. Eng. 44 (2002), pp. 59–121.10.1081/CR-120001459
  • T. Yamamoto, Assignment of pre-edge peaks in K-edge x-ray absorption spectra of 3d transition metal compounds: Electric dipole or quadrupole? X-Ray Spectrom. 37 (2008), pp. 572–584.10.1002/xrs.v37:6
  • V. Krishnan, R.K. Selvan, C.O. Augustin, A. Gedanken, and H. Bertagnolli, EXAFS and XANES Investigations of CuFe2O4 nanoparticles and CuFe2O4−MO2 (M = Sn, Ce) Nanocomposites, J. Phys. Chem. C 111 (2007), pp. 16724–16733.10.1021/jp073746t
  • T. Shi, W. Liu, and S. Wei, Local structures around Co atoms in wurtzite ZnO nano-composites probed by fluorescence XAFS, AIP Conf. Proc. 882 (2007), pp. 289–292.10.1063/1.2644504
  • W. Bungmek, P. Viravathana, S. Prangsri-aroon, S. Chotiwan, O. Deutschmann, and H. Schulz, XAS Studies on promoted and un-promoted silica supported cobalt catalysts for Fischer-Tropsch synthesis, Int. Conf. Environ. Ind. Innov. (IPCBEE) 12 (2011), pp. 65–69.
  • A. Khodakov, O. Ducreux, J. Lynch, B. Rebours, and P. Chaumette, Structural modification of cobalt catalysts: Effect of wetting studied by X-ray and infrared techniques, Oil Gas Sci. Technol.– Rev. IFP 54 (1999), pp. 525–536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.