292
Views
22
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A framework for statistical modelling of plastic yielding initiated cleavage fracture of structural steels

Pages 3586-3631 | Received 01 May 2016, Accepted 23 Aug 2016, Published online: 25 Sep 2016

References

  • ASTM E 1921-13, Standard test method for determination of reference temperature, T0, for ferritic steels in the transition range, 2013. Available at https://www.astm.org/Standard/standards-and-publications.html.
  • W. Böhme, Experience with instrumented Charpy tests obtained by a DVM round-robin and further development, in Evaluating Material Properties by Dynamic Testing, ESIS Publication 20, E. Van Walle, ed., Mechanical Engineering Publications, London, 1996, pp. 1–23.
  • C.M. Moura, J.J. Vilela, E.G. Rabello, G. de Paula Martins, and J.R.G. Carneiro, Evaluation of the ductile-to-brittle transition temperature in low carbon steel, in International Nuclear Atlantic Conference (INAC 2009), Rio de Janeiro, RJ, Brazil, Sept. 27 Oct 2, 2009. Available at http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/40/106/40106396.pdf.
  • P.P. Puzak, E.W. Eschbacher, and W.S. Pellini, Initiation and propagation of brittle fracture in structural steels, Weld. J. 31 (1954), pp. 561-s–581-s.
  • ASTM E208-06, Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels, 2012. Available at https://www.astm.org/Standard/standards-and-publications.html.
  • P.P. Puzak, M.E. Schuster, and W.S. Pellini, Crack starter tests of ship fracture and project steels, Weld. J. 33 (1954), pp. 481-s–496-s.
  • P.P. Puzak, A.J. Babecki, and W.S. Pellini, Correlations of brittle fracture service failures with laboratory notch-ductility tests, Weld. J. 37 (1958), pp. 391-s–410-s.
  • W.S. Pellini and P.P. Puzak, Fracture analysis diagram procedures for the fracture-safe engineering design of steel structures, Weld. Res. Counc. Bull. No. 88 (1963), 28 pages.
  • A. Cosham, D.G. Jones, R. Eiber, and P. Hopkins, Don’t drop the drop weight tear test, J. Pipeline Eng. 9 (2010), pp. 69–84.
  • R.J. Eiber, Correlation of full scale tests with laboratory tests in the 3rd Symposium on Line Pipe Research. American Gas Association (AGA) Catalogue No. L30000e, Pipeline Research Council International (PRCI), Inc. Report PRCI NG-18, Dalias, TX, 1965, pp. 83–118. Available at http://www.techstreet.com/aga/standards/prci-ng-18?product_id=1702965#product.
  • R.J. Eiber and B.N. Leis, Fracture control technology for pipelines-ca. 2000, Final Report on Project PR-3-00108 to the Line Pipe Research Supervisory Committee of the Pipeline Research Council International, PRCI Report PR-3-00108, Battelle, Ohio, 2002.
  • Y.Y. Wu, H.L. Yu, C. Lu, K. Tieu, A.R. Godbole, and G. Michal, Transition of ductile and brittle fracture during DWTT by FEM, in 13th International Conference on Fracture (ICF13), Curran Associates, Inc., China, 2013, pp. 1648–1655.
  • ANSI/API RP5L3, Recommended Practice for Conducting Drop-Weight Tear Tests on Line Pipe, 3rd ed., 1996. Available at http://www.api.org/~/media/files/publications/whats%20new/5l3_e4%20pa.pdf.
  • ASTM E436-03, Standard Test Method for Drop-Weight Tear Tests of Ferritic Steels, 2014, Available at https://www.astm.org/Standard/standards-and-publications.html.
  • C.S. Wiesner, Predicting structural crack arrest behaviour using small-scale material characterization tests, Int. J. Press. Vessels Pip. 69 (1996), pp. 185–196.10.1016/0308-0161(95)00131-X
  • C. Gallo, J.A. Álvarez, F. Gutiérrez-Solana, and J.A. Polanco, Predicting crack arrest behaviour of structural steels using small-scale material characterization tests, in From Charpy to Present Impact Testing, ESIS Publication 30, D. François and A. Pineau, eds., Elsevier, Poitiers, 2002, pp. 271–278.10.1016/S1566-1369(02)80030-9
  • T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd ed., CRC Press, Boca Raton, FL, 2005.
  • N.P. O’Dowd and C.F. Shih, Family of crack-tip fields characterized by a triaxiality parameter: Part I-Structure of fields, J. Mech. Phys. Solids 39 (1991), pp. 989–1015.10.1016/0022-5096(91)90049-T
  • N.P. O’Dowd and C.F. Shih, Family of crack-tip fields characterized by a triaxiality parameter: Part II-Fracture applications, J. Mech. Phys. Solids 40 (1992), pp. 939–963.10.1016/0022-5096(92)90057-9
  • X.K. Chao and Y.J. Chao, J-A2 characterization of crack-tip fields: Extent of J-A2 dominance and size requirements, Int. J. Fract 89 (1998), pp. 285–307.10.1023/A:1007487911376
  • E. Orowan, Classical and Dislocation Theories of Brittle Fracture, in Fracture, B.L. Averbach, D.K. Felbeck, G.T. Hahn, and D.A. Thmas, eds., Wiley, New York, 1959, pp. 147–160.
  • W. Weibull, A statistical theory of the strength of materials, Ingeniorsvetenskapakademiens. Handlinger 151 (1939), pp. 1–45.
  • P. Kittl and G. Diaz, Weibull’s fracture statistics, or probabilistic strength of materials: State of the art, Res Mech. 24 (1988), pp. 99–207.
  • R. Danzer, P. Supancic, J. Pascual, and T. Lube, Fracture statistics of ceramics – Weibull statistics and deviations from Weibull statistics, Eng. Fract. Mech. 74 (2007), pp. 2919–2932.10.1016/j.engfracmech.2006.05.028
  • J.D. Landes and D.H. Shaffer, Statistical characterization of fracture in the transition region, in Fracture Mechanics: 12th Conference, ASTM STP 700, ASTM, Philadelphia, 1980, pp.368–382.
  • F.M. Beremin, A local approach for cleavage fracture of a nuclear pressure vessel steel, Metall. Trans. A 14 (1983), pp. 2277–2287.10.1007/BF02663302
  • D.A. Curry, Cleavage micromechanisms of crack extensions in steels, Met. Sci. 14 (1980), pp. 319–326.10.1179/msc.1980.14.8-9.319
  • J.H. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals, 1st ed., Butterworth-Heinemann, Oxford, 2014.
  • A. Pineau, Development of the local approach to fracture over the past 25 years: Theory and applications, Int. J. Fract. 138 (2006), pp. 139–166.
  • C. Ruggieri and R.H. Dodds, An engineering methodology for constraint corrections of elastic-plastic fracture toughness – Part I: A review on probabilistic models and exploration of plastic strain effects, Eng. Fract. Mech. 134 (2015), pp. 368–390.10.1016/j.engfracmech.2014.12.015
  • C. Zener, Fracture of metals, in 29th National Metal Congress and Exposition, American Society for Metals, Cleveland, OH, 1948, pp. 3–31.
  • A.N. Stroh, The formation of cracks as a result of plastic flow, Proc. Roy. Soc. London A 223 (1954), pp. 404–414.10.1098/rspa.1954.0124
  • A.H. Cottrell, Theory of brittle facture in steel and similar metals, Trans. Metall. Soc. AIME 212 (1958), pp. 192–203.
  • J. Friedel, Dislocation, Pergamon Press Editions, New York, 1964.
  • E. Smith, The nucleation and growth of cleavage microcracks in mild steel, in Proceedings of Conference on Physical Basis of Yield and Fracture, Institute of Physics and Physical Society, Oxford, 1966, pp. 36–46.
  • A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau, Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel, Metall. Mater. Trans. A 35 (2004), pp. 1039–1053.10.1007/s11661-004-1007-6
  • A. Echeverria and J.M. Rodriguez-Ibabe, Cleavage micromechanisms on microalloyed steels: Evolution with temperature of some critical parameters, Scripta Mater. 50 (2004), pp. 307–312.10.1016/j.scriptamat.2003.09.003
  • B.Z. Margolin, V.A. Shvetsova, and G.P. Karzov, Brittle fracture of nuclear pressure vessel steels – I. Local criterion for cleavage fracture, Int. J. Press. Vessels Pip.. 72 (1997), pp. 73–87.10.1016/S0308-0161(97)00012-4
  • B.Z. Margolin, V.A. Shvetsova, and A. Gulenko, Radiation embrittlement modelling in multi-scale approach to brittle fracture of RPV steels, Int. J. Fract. 179 (2013), pp. 87–108.10.1007/s10704-012-9775-2
  • J.H. Chen and G.Z. Wang, Study of mechanism of cleavage fracture at low temperature, Metall. Trans. A 23 (1992), pp. 509–517.10.1007/BF02801168
  • M. Kroon and J. Faleskog, Micromechanics of cleavage fracture initiation in ferritic steels by carbide cracking, J. Mech. Phys. Solids 53 (2005), pp. 171–196.10.1016/j.jmps.2004.05.008
  • M. Kroon and J. Faleskog, Influence of crack deflection into the carbide/ferrite interface on cleavage fracture initiation in ferritic steels, Mech. Mater. 40 (2008), pp. 695–707.10.1016/j.mechmat.2008.03.006
  • I. Kawata, K. Sugimoto, and S. Aihara, Simulation of cleavage crack propagation in steels with anisotropic crystal orientation distribution, Procedia Mater. Sci. 3 (2014), pp. 531–536.10.1016/j.mspro.2014.06.088
  • R.O. Ritchie, J.F. Knott, and J.R. Rice, On the relationship between critical tensile stress and fracture toughness in mild steel, J. Mech. Phys. Solids 21 (1973), pp. 395–410.10.1016/0022-5096(73)90008-2
  • D.A. Curry and J.F. Knott, Effects of microstructure on cleavage fracture stress in steel, Met. Sci. 12 (1978), pp. 511–514.10.1179/msc.1978.12.11.511
  • S. Nohut, A. Usbeck, H. Özcoban, D. Krause, and G.A. Schneider, Determination of the multiaxial failure criteria for alumina ceramics under tension-torsion test, J. Eur. Ceram. Soc. 30 (2010), pp. 3339–3349.10.1016/j.jeurceramsoc.2010.08.008
  • P.T. Williams, B.R. Bass, and W.J. McAfee, Shallow flaws under biaxial loading conditions, Part II. Application of a Weibull stress analysis of the cruciform bend specimen using a hydrostatic stress criterion, ASME J. Pres. Ves. Tech. 123 (2000), pp. 25–31.
  • W.-S. Lei, A cumulative failure probability model for cleavage fracture in ferritic steels, Mech. Mater. 93 (2016), pp. 184–198.10.1016/j.mechmat.2015.11.001
  • G. Pluvinage, Fracture criteria; Global or local?, Struct. Int. Life 11 (2011), pp. 173–176.
  • J.R. Griffiths and D.R.J. Owen, An elastic-plastic stress analysis for a notched bar in plane strain bending, J. Mech. Phys. Solids 19 (1971), pp. 419–431.10.1016/0022-5096(71)90009-3
  • H. Duennewaldarfmann, M. Twickler, R. Twickler, and W. Dahl, Investigations on cleavage fracture below and at general yield, in Advances in Fracture Research, K. Salama, K. Ravi-Chandar, D.M.R. Taplin, and P.R. Rao, eds., Vol. 1, Pergamon Press, Houston, TX, 1989, pp. 230–238.
  • C. Juede-Esser, F. Grimpe, and W. Dahl, Investigations on microscopic cleavage fracture stress, in Proceedings of the Tenth European Conference of Fracture – Structural Integrity: Experiments, Models and Applications, K.H. Schwalbe and C. Berger eds., Engineering Materials Advisory Services, Berlin, 1994, pp. 1017–1023.
  • F. Grimpe, J. Heyer, and W. Dahl, Influence of temperature, strain rate and specimen geometry on the microscopic cleavage fracture stress, Nucl. Eng. Des. 188 (1999), pp. 155–160.10.1016/S0029-5493(99)00012-6
  • X.X. Xu, Q.G. Cai, and Y. Su, A tensile stress criterion for cleavage in precracked, nothed and smooth bars, Int. J. Fract. 50 (1991), pp. 51–65.
  • D.A. Curry and J.F. Knott, Effect of microstructure on cleavage fracture toughness of quenched and tempered steels, Met. Sci. 13 (1979), pp. 341–345.10.1179/msc.1979.13.6.341
  • A.A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. London, A 221 (1921), pp. 163–198.10.1098/rsta.1921.0006
  • T. Lin, A.G. Evans, and R.O. Ritchie, A statistical model of brittle fracture by transgranular cleavage, J. Mech. Phys. Solids 34 (1986), pp. 477–497.10.1016/0022-5096(86)90013-X
  • A.S. Eldin and S.C. Collins, Fracture and yield stress of 1020 steel at low temperatures, J. Appl. Phys. 22 (1951), pp. 1296–1297.
  • J.R. Matthews, F.A. Mcclintock, and W. Shack, Statistical determination of surface flaw density in brittle materials, J. Am. Ceram. Soc. 59 (1976), pp. 304–308.10.1111/jace.1976.59.issue-7-8
  • A.G. Evans, Evaluation of a fundamental approach for the statistical analysis of fracture, J. Am. Ceram. Soc. 61 (1978), pp. 156–160.10.1111/jace.1978.61.issue-3-4
  • S.B. Bartdorf and H.L. Heinisch Jr, Weakest link theory reformulated for arbitrary fracture criterion, J. Am. Ceram. Soc. 61 (1978), pp. 355–358.10.1111/jace.1978.61.issue-7-8
  • J. Lamon, Statistical approaches to failure for ceramic reliability assessment, J. Am. Ceram. Soc. 71 (1988), pp. 106–112.10.1111/jace.1988.71.issue-2
  • M. Kroon and J. Faleskog, A probabilistic model for cleavage fracture with a length scale-influence of material parameters and constraint, Int. J. Fract. 118 (2002), pp. 99–118.10.1023/A:1022864513654
  • P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, and R.O. Ritchie, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids 58 (2010), pp. 206–226.10.1016/j.jmps.2009.10.005
  • D. Jeulin, Multi-scale random sets: From morphology to effective properties and to fracture statistics, J. Phys.: Conf. Ser. 319 (2011), pp. 1–11.
  • C.S. Wiesner and M.R. Goldthorpe, The effect of temperature and specimen geometry on the parameters of the “Local Approach” to cleavage fracture, J. Phys. IV 6 (1996), pp. 295–304.
  • G. Bernauer, W. Brocks, and W. Schmitt, Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel, Eng. Fract. Mech. 64 (1999), pp. 305–325.10.1016/S0013-7944(99)00076-4
  • P.P. Milella and N. Bonora, On the dependence of the Weibull exponent on geometry and loading conditions and its implications on the fracture toughness probability curve using a local approach criterion, Int. J. Fract. 104 (2000), pp. 71–87.10.1023/A:1007680819217
  • B. Wasiluk, J.P. Petti, and R.H. Dodds, Temperature dependence of Weibull stress parameters: Studies using the Euro-material, Eng. Fract. Mech. 73 (2006), pp. 1046–1069.10.1016/j.engfracmech.2005.11.006
  • J.P. Mathieu, K. Inal, S. Berveiller, and O. Diard, A micromechanical interpretation of the temperature dependence of Beremin model parameters for French RPV steel, J. Nucl. Mater. 406 (2010), pp. 97–112.10.1016/j.jnucmat.2010.02.025
  • A. Bakker and R.W.J. Koers, Prediction of cleavage fracture events in the brittle-ductile transition region of a ferritic steel, in Defect Assessment in Components Fundamentals and Applications, ESIS/EGF9, J.G. Blauel and K.H. Schwalbe, eds., Mechanical Engineering Publications, London, 1991, pp. 613–632.
  • L. Xia and C.F. Shih, Ductile crack growth – III. Transition to cleavage fracture incorporating statistics, J. Mech. Phys. Solids 44 (1996), pp. 603–639.10.1016/0022-5096(95)00086-0
  • P. Haušild, C. Berdin, and P. Bompard, Prediction of cleavage fracture for a low-alloy steel in the ductile-to-brittle transition temperature range, Mater. Sci. Eng., A 391 (2005), pp. 188–197.10.1016/j.msea.2004.08.067
  • T. Lin, A.G. Evans, and R.O. Ritchie, Stochastic modeling of the independent roles of particle size and grain size in transgranular cleavage fracture, Metall. Trans. A 18 (1987), pp. 641–651.10.1007/BF02649480
  • S. Hadidi-Moud, A. Mirzaee-Sisan, C.E. Truman, and D.J. Smith, A local approach to cleavage fracture in ferritic steels following warm pre-stressing, Fatigue Fract. Eng. Mater. Struct. 27 (2004), pp. 931–942.10.1111/ffe.2004.27.issue-10
  • X. Gao, G. Zhang, and T.S. Srivatsan, A probabilistic model for prediction of cleavage fracture in ferritic steels: A modified Weibull stress model, Mater. Sci. Eng., A 394 (2005), pp. 210–219.10.1016/j.msea.2004.11.035
  • M. Moattari, I. Sattari-Far, I. Persechino, and N. Bonora, Prediction of fracture toughness in ductile-to-brittle transition region using combined CDM and Beremin models, Mater. Sci. Eng., A 657 (2016), pp. 161–172.10.1016/j.msea.2015.12.090
  • J.P. Petti and R.H. Dodds, Calibration of the Weibull stress scale parameter, σu, using the Master Curve, Eng. Fract. Mech. 72 (2005), pp. 91–120.10.1016/j.engfracmech.2004.03.009
  • K. Wallin, T. Saario, and K. Toerroenen, Fracture of brittle particles in a ductile matrix, Int. J. Fract. 32 (1987), pp. 201–209.
  • K. Wallin and A. Laukkanen, New developments of the Wallin, Saario, Toerroenen cleavage fracture model, Eng. Fract. Mech. 75 (2008), pp. 3367–3377.10.1016/j.engfracmech.2007.07.018
  • J. Faleskog, M. Kroon, and H. Öberg, A probabilistic model for cleavage fracture with a length scale-parameter estimations of stationary crack experiments, Eng. Fract. Mech. 71 (2004), pp. 57–79.10.1016/S0013-7944(03)00066-3
  • S.R. Bordet, A.D. Karstensen, D.M. Knowles, and C.S. Wiesner, A new statistical local criterion for cleavage fracture in steel. Part I: Model presentation, Eng. Fract. Mech. 72 (2005), pp. 435–452.10.1016/j.engfracmech.2004.02.009
  • S.R. Bordet, B. Tanguy, J. Besson, D. Moinereau, and A. Pineau, Cleavage fracture of a RPV steel following warm pre-stressing: Microstructural analysis and interpretation through a new model, Fatigue Fract. Eng. Mater. Struct. 29 (2006), pp. 799–816.10.1111/ffe.2006.29.issue-9-10
  • W.-S. Lei, A statistical model of cleavage fracture in structural steels with power-law distribution of microcrack size, Philos. Mag. Lett. 96 (2016), pp. 101–111.10.1080/09500839.2016.1158425
  • W.–S. Lei, A discussion of “An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions” by C. Ruggieri, R.G. Savioli, R.H. Dodds, Eng. Fract. Mech. 146 (2015):185–209). Eng. Fract. Mech. 2016, In press. http://dx.doi.org/10.1016/j.engfracmech.2016.02.052.
  • Z.P. Bazant, Y. Xi, and S. Reid, Statistical size effect in quasi-brittle structures: I. Is Weibull theory applicable?, J. Eng. Mech. 117 (1991), pp. 2609–2622.10.1061/(ASCE)0733-9399(1991)117:11(2609)
  • W.-S. Lei, Statistics of single-fiber tensile strength incorporating spatial distribution of microcracks, Fatigue Fract. Eng. Mater. Struct. 2016, In press. http://dx.doi.org/10.1111/ffe.12445.
  • H. Riesch-Oppermann, K. Heiermann, and S. Roudi, Advanced probabilistic tools for the uncertainty assessment in component reliability predictions, in Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), P. Neittaanmaeki, T. Rossi, S. Korotov, E. Onate, J. Periaux, and D. Knoerzer, eds., Jyväskylä, 2004, pp. 1–20.
  • C. Ruggieri and R.H. Dodds Jr., Numerical evaluation of probabilistic fracture parameters using WSTRESS, Eng. Comput. 15 (1998), pp. 49–73.10.1108/02644409810200686
  • S. Kotrechko, The key problems of local approach to cleavage fracture, J. Theor. Appl. Mech. 51 (2013), pp. 75–89.
  • S.B. Batdorf and J.G. Crose, A statistical theory for the fracture of brittle structures subjected to nonuniform polyaxial stresses, J. Appl. Mech. 41 (1974), pp. 459–464.10.1115/1.3423310
  • S. Lee, S. Kim, B. Hwang, B. Lee, and C.G. Lee, Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel, Acta Mater. 50 (2002), pp. 4755–4762.10.1016/S1359-6454(02)00313-0
  • A. Pineau and B. Tanguy, Advances in clavage fracture modelling in steels: Micromechanical, numerical and multiscale aspects, C.R. Phys. 11 (2010), pp. 316–325.10.1016/j.crhy.2010.07.013
  • A.G. Evans, Statistical aspects of cleavage fracture in steel, Metall. Trans. A 14A (1993), pp. 1349–1355.
  • F. Minami, A. Brueckner-Foit, D. Munz, and B. Trolldenier, Estimation procedure for the Weibull parameters used in the local approach, Int. J. Fract. 54 (1992), pp. 197–210.
  • ESIS P6-98, Procedure to Measure and Calculate Materials Parameters for the Local Approach to Fracture using Notch Tensile Specimens, ESIS Publication, 1998. Available at http://www.lavoisier.eu/books/other/esis-procedure-p6-98-procedure-to-measure-et-calculate-material-parameters-for-the-local-approach-to-fracture-using-notched-tensile-specimens/description_2272290.
  • K. Wallin, T. Saario, and K. Toerroenen, Statistical model for carbide induced brittle fracture in steel, Met. Sci. 18 (1984), pp. 13–16.10.1179/030634584790420384
  • X.X. Xu, Q.G. Cai, Y. Su, C.X.Hou, and. W.D. Ma, Statistical model of cleavage fracture in granular bainite in simulated weld heat affected zone, Mater. Sci. Technol.. 5 (1989), pp. 913–917.10.1179/mst.1989.5.9.913
  • S. Ortner, J. Duff, and D. Beardsmore, Characterization of Euro A reference steel for application of EOH model of brittle fracture, Technical report SA/EIG/15234/R003 Project PERFECT, SERCO Assurance, 2005.
  • P.M. James, M. Ford, and A.P. Jivkov, A novel particle failure criterion for cleavage fracture modelling allowing measured brittle particle distributions, Eng. Fract. Mech. 121–122 (2014), pp. 98–115.10.1016/j.engfracmech.2014.03.005
  • B. Tanguy, J. Besson, and A. Pineau, Comment on effect of carbide distribution on the fracture toughness in the transition region of an SA 508 steel, Scripta Mater. 49 (2003), pp. 191–197.10.1016/S1359-6462(03)00239-2
  • L. Vincent, M. Libert, B. Marini, and C. Rey, Towards a modeling of RPV steel brittle fracture using crystal plasticity computations on polycrystalline aggregrates, J. Nucl. Mater. 406 (2010), pp. 91–96.10.1016/j.jnucmat.2010.07.022
  • M. Capurro, P. Brozzo, and P. Cirillo, Statistical aspects of cleavage resistance of high strength microalloyed structural steels, Mater. Sci. Technol. 13 (1997), pp. 645–649.10.1179/mst.1997.13.8.645
  • W.-S. Lei, Evaluation of the basic formulations for the cumulative probability of brittle fracture with two different spatial distributions of microcracks, Fatigue Fract. Eng. Mater. Struct. 39 (2016), pp. 611–623.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.