277
Views
19
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Structural and anisotropic elastic properties of hexagonal MP (M = Ti, Zr, Hf) monophosphides determined by first-principles calculations

&
Pages 3654-3670 | Received 31 Mar 2016, Accepted 05 Sep 2016, Published online: 21 Sep 2016

References

  • M. Wojciechowska, J. Haber, S. Lomnicki, and J. Stoch, Structure and catalytic activity of double oxide system: Cu–Cr–O supported on MgF2, J. Mol. Catal. A: Chem. 141 (1999), pp. 155–170. 10.1016/S1381-1169(98)00259-3
  • C.N.R. Rao, Transition metal oxides, Anu. Rev. Phys. Chem. 40 (1989), pp. 291–326. 10.1146/annurev.pc.40.100189.001451
  • W. Welter, Stellar and other high-temperature molecules, Science 155 (1967), pp. 155–164. 10.1126/science.155.3759.155
  • N.M. White and R.F. Wing, Photoelectric two-dimensional spectral classification of M supergiants, Astrophys. J. 222 (1978), pp. 209–219.10.1086/156136
  • A. Veillard, Ab initio calculations of transition-metal organometallics: Structure and molecular properties, Chem. Rev. 91 (1991), pp. 743–766. 10.1021/cr00005a006
  • N. Koga and K. Morokuma, Ab initio molecular orbital studies of catalytic elementary reactions and catalytic cycles of transition-metal complexes, Chem. Rev. 91 (1991), pp. 823–842. 10.1021/cr00005a010
  • A.J. Merer, Spectroscopy of the diatomic 3d transition metal oxides, Annu. Rev. Phys. Chem. 40 (1989), pp. 407–438. 10.1146/annurev.pc.40.100189.002203
  • M. Hargittai, Molecular structure of metal halides, Chem. Rev. 100 (2000), pp. 2233–2302. 10.1021/cr970115u
  • B. Huang, Y.H. Duan, W.C. Hu, Y. Sun, and S. Chen, Structural, anisotropic elastic and thermal properties of MB (M = Ti, Zr and Hf) monoborides, Ceram. Int. 41 (2015), pp. 6831–6843. 10.1016/j.ceramint.2015.01.132
  • R.L. Riplay, The preparation and properties of some transition phosphides, J. Less Common Met. 4 (1962), pp. 496–503. 10.1016/0022-5088(62)90037-1
  • M. Knausenberger, G. Brauer, and I.A. Gingerich, Preparation and phase studies of titanium phosphides, J. Less Common Met. 8 (1965), pp. 136–148. 10.1016/0022-5088(65)90105-0
  • S. Motojima, T. Wakamatsu, Y. Takahashi, and K. Sugiyama, Crystal growth and some properties of titanium monophosphide, J. Electrochem. Soc. 123 (1976), pp. 290–295. 10.1149/1.2132805
  • E.F. Strotzer, W. Biltz, and K. Meisel, Beiträge zur systematischen Verwandtschaftslehre. 84. Zirkoniumphosphide [Contributions to the systematic affinity. 84. Zirkoniumphosphide], Z. Anorg. Chem. 239 (1938), pp. 216–224. 10.1002/zaac.19382390211
  • W. Blitz, A. Rink, and F. Wiechman, Compounds of Ti with P; Contribution to systematic affinity theory, Z. Anorg. Chem. 238 (1938), pp. 395–405.10.1002/zaac.19382380408
  • K.A. Gingerich, Stability and vaporization behaviour of group IV–VI transition metal monophosphides, Nature 200 (1963), pp. 877–877. 10.1038/200877a0
  • N. Schönberg, An X-ray investigation of transition metal phosphides, Acta Chem. Scand. 8 (1954), pp. 226–239.10.3891/acta.chem.scand.08-0226
  • K.S. Irani and K.A. Gingerich, Structural transformation of zirconium phosphide, J. Phys. Chem. Solids 24 (1963), pp. 1153–1158. 10.1016/0022-3697(63)90231-2
  • P.-O. Snell, The crystal structure of TiP, Acta Chem. Scand. 27 (1967), pp. 1773–1776.10.3891/acta.chem.scand.21-1773
  • R.F. Jarvis Jr., R.M. Jacubinas, and R.B. Kaner, Self-propagating metathesis routes to metastable group 4 phosphides, Inorg. Chem. 39 (2000), pp. 3243–3246. 10.1021/ic000057m
  • L. Chen, M. Huang, Y. Gu, L. Shi, Z. Yang, and Y. Qian, Low-temperature synthesis of nanocrystalline ZrP via co-reduction of ZrCl4 and PCl3, Mater. Lett. 58 (2004), pp. 3337–3339. 10.1016/j.matlet.2004.06.033
  • S. Motojima, Y. Takahashi, and K. Sugiyama, Chemical vapour deposition of zirconium phosphide whiskers, J. Cryst. Growth 30 (1975), pp. 1–8. 10.1016/0022-0248(75)90191-8
  • M. Fujii, H. Iwanaga, and S. Motojima, CVD growth and morphology of transition-metal phosphides, J. Cryst. Growth 166 (1996), pp. 99–103. 10.1016/0022-0248(95)00525-0
  • T.S. Lewkebandara, J.W. Proscia, and C.H. Winter, Precursor for the low-temperature deposition of titanium phosphide films, Chem. Mater. 7 (1995), pp. 1053–1054. 10.1021/cm00054a003
  • C.S. Blackman, C.J. Carmalt, I.P. Parkin, S.A. O’Neill, K.C. Molloy, and L. Apostolico, Chemical vapour deposition of crystalline thin films of tantalum phosphide, Mater. Lett. 57 (2003), pp. 2634–2636. 10.1016/S0167-577X(02)01341-1
  • H.-J. Sue, K.T. Gam, N. Bestaoui, N. Spurr, and A. Clearfield, Epoxy nanocomposites based on the synthetic α-zirconium phosphate layer structure, Chem. Mater. 16 (2004), pp. 242–249. 10.1021/cm030441s
  • M. Pica, A. Donnadio, and M. Casciola, Starch/zirconium phosphate composite films: Hydration, thermal stability, and mechanical properties, Starch-Stärke 64 (2012), pp. 237–245. 10.1002/star.201100113
  • M. Hussain, Y.-H. Ko, and Y.-H. Choa, Significant enhancement of mechanical and thermal properties of thermoplastic polyester elastomer by polymer blending and nanoinclusion, J. Nanomater. 2016 (2016), pp. 1–9. 10.1155/2016/8515103
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter. 14 (2002), pp. 2717–2744. 10.1088/0953-8984/14/11/301
  • J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54 (1996), pp. 16533–16539. 10.1103/PhysRevB.54.16533
  • K. Bachmayer, H. Nowotny, and A. Kohl, Die struktur von TiAs [The structure of TiAs], Monatsh. Chem, 86 (1955), pp. 39–43. 10.1007/BF00899271
  • W. Jeitschko and H. Nowotny, Die struktur von HfP [The structure of HfP], Monatsh. Chem. 93 (1962), pp. 1107–1109. 10.1007/BF00905910
  • G. Hägg, Gesetzmässigkeiten im kristallbau bei hydriden, boriden, carbiden und nitriden der übergangselemente [Laws in crystal construction in hydrides, borides, carbides, nitrides of transition elements], Z. Phys. Chem. 12 (1931), pp. 33–56.
  • C.J. Qi, J. Feng, R.F. Zhou, Y.H. Jiang, and R. Zhou, First principles study on the stability and mechanical properties of MB (M = V, Nb and Ta) compounds, Chin. Phys. Lett. 30 (2013), pp. 117101-1–117101-5. 10.1088/0256-307X/30/11/117101
  • F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K, J. Geophys. Res. 83 (1978), pp. 1257–1268. 10.1029/JB083iB03p01257
  • X.P. Gao, Y.H. Jiang, R. Zhou, and J. Feng, Stability and elastic properties of Y-C binary compounds investigated by first principles calculations, J. Alloys Compd. 587 (2014), pp. 819–826. 10.1016/j.jallcom.2013.11.005
  • H. Ozisik, E. Deligoz, K. Colakoglu, and G. Surucu, Structural and mechanical stability of rare-earth diborides, Chin. Phys. B 4 (2013), pp. 046202-1–046202-8. 10.1088/1674-1056/22/4/046202
  • W. Voigt, Lehrbuch der Kristallphysik [Handbook on crystal physics], Taubner, Leipzig, 1928.
  • A. Reuss, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle [Calculation of the yield of mixed crystals on the basis of the plasticity condition for single crystals], Z. Angew. Math. Mech. 9 (1929), pp. 49–58. 10.1002/zamm.19290090104
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65 (1952), pp. 349–354. 10.1088/0370-1298/65/5/307
  • N. Korozlu, K. Colakoglu, E. Deligoz, and S. Aydin, The elastic and mechanical properties of MB12 (M = Zr, Hf, Y, Lu) as a function of pressure, J. Alloys Compd. 546 (2013), pp. 157–164. 10.1016/j.jallcom.2012.08.062
  • S.F. Pugh, XCII, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954), pp. 823–843. 10.1080/14786440808520496
  • J.J. Lewandowski, W.H. Wang, and A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85 (2005), pp. 77–87. 10.1080/09500830500080474
  • S. Chen, Y. Sun, Y.H. Duan, B. Huang, and M.J. Peng, Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations, J. Alloys Compd. 630 (2015), pp. 202–208. 10.1016/j.jallcom.2015.01.038
  • X.Q. Chen, H.Y. Niu, D.Z. Li, and Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19 (2011), pp. 1275–1281. 10.1016/j.intermet.2011.03.026
  • A.K.M.A. Islam, A.S. Sikder, and F.N. Islam, NbB2: A density functional study, Phys. Lett. A 350 (2006), pp. 288–292. 10.1016/j.physleta.2005.09.085
  • J. Feng, B. Xiao, R. Zhou, W. Pan, and D.R. Clarke, Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure, Acta Mater. 60 (2012), pp. 3380–3392. 10.1016/j.actamat.2012.03.004
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), pp. 055504. 10.1103/PhysRevLett.101.055504
  • H.B. Ozisik, K. Colakoglu, and E. Deligoz, First-principles study of structural and mechanical properties of AgB2 and AuB2 compounds under pressure, Comput. Mater. Sci. 51 (2012), pp. 83–90. 10.1016/j.commatsci.2011.07.043
  • P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998), pp. 4891–4904. 10.1063/1.368733
  • G. Steinle-Neumann, L. Stixtude, and R.E. Cohen, First-principles elastic constants for the hcp transition metals Fe Co, and Re at high pressure, Phys. Rev. B 60 (1999), pp. 791–799. 10.1103/PhysRevB.60.791
  • M. Born and K. Huang, Dynamical theory of crystal lattices, Clarendon, Oxford, 1954.
  • J.F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford, 1985.
  • K. Brugger, Determination of third-order elastic coefficients in crystals, J. Appl. Phys. 36 (1965), pp. 768–773. 10.1063/1.1714216
  • D. Music, A. Houben, R. Dronskowski, and J.M. Schneider, Ab initio study of ductility in M2AlC (M = Ti, V, Cr), Phys. Rev. B 75 (2007), pp. 174102-1–174102-5. 10.1103/PhysRevB.75.174102
  • J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, and W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore, Acta Mater. 59 (2011), pp. 1742–1760. 10.1016/j.actamat.2010.11.041
  • Y. Shen, D.R. Clarke, and P.A. Fuierer, Anisotropic thermal conductivity of the aurivillus phase, bismuth titanate (Bi4Ti3O12): A natural nanostructured superlattice, Appl. Phys. Lett. 93 (2008), pp. 102907-1–102907-3. 10.1063/1.2975163
  • D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163–164 (2003), pp. 67–74. 10.1016/S0257-8972(02)00593-5
  • D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res. 33 (2003), pp. 383–417. 10.1146/annurev.matsci.33.011403.113718
  • D.G. Cahill, S.K. Watson, and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46 (1992), pp. 6131–6140. 10.1103/PhysRevB.46.6131
  • Y.H. Duan, Y. Sun, and L. Lu, Thermodynamic properties and thermal conductivities of TiAl3-type intermetallics in Al–Pt–Ti system, Comput. Mater. Sci. 68 (2013), pp. 229–233. 10.1016/j.commatsci.2012.11.012
  • J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113 (1959), pp. 1046–1051. 10.1103/PhysRev.113.1046
  • J. Feng, B. Xiao, R. Zhou, and W. Pan, Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations, Acta Mater. 61 (2013), pp. 7364–7383. 10.1016/j.actamat.2013.08.043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.