664
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Mechanical properties of in situ consolidated nanocrystalline multi-phase Al–Pb–W alloy studied by nanoindentation

, , &
Pages 3671-3685 | Received 22 Jul 2015, Accepted 06 Sep 2016, Published online: 27 Sep 2016

References

  • K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater. 51 (2003), pp. 5743–5774.10.1016/j.actamat.2003.08.032
  • M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater Sci. 51 (2006), pp. 427–556.10.1016/j.pmatsci.2005.08.003
  • H. Van Swygenhoven and J.R. Weertman, Deformation in nanocrystalline metals, Mater. Today 9 (2006), pp. 24–31.10.1016/S1369-7021(06)71494-8
  • R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zechetbauer, and Y. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58 (2006), pp. 33–39.10.1007/s11837-006-0213-7
  • C.C. Koch, K.M. Youssef, R.O. Scattergood, and K.L. Murty, Breakthroughs in optimization of mechanical properties of nanostructured metals and alloys, Adv. Eng. Mater. 7 (2005), pp. 787–794.10.1002/(ISSN)1527-2648
  • Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals, Mater. Sci. Eng. A 381 (2004), pp. 71–79.10.1016/j.msea.2004.03.064
  • K. Darling, M. Tschopp, R. Guduru, W. Yin, Q. Wei, and L. Kecskes, Microstructure and mechanical properties of bulk nanostructured Cu–Ta alloys consolidated by equal channel angular extrusion, Acta Mater. 76 (2014), pp. 168–185.10.1016/j.actamat.2014.04.074
  • R.J. Asaro and S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins, Acta Mater. 53 (2005), pp. 3369–3382.10.1016/j.actamat.2005.03.047
  • J. May, H.W. Höppel, and M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation, Scr. Mater. 53 (2005), pp. 189–194.10.1016/j.scriptamat.2005.03.043
  • L. Lu, R. Schwaiger, Z. Shan, M. Dao, K. Lu, and S. Suresh, Nano-sized twins induce high rate sensitivity of flow stress in pure copper, Acta Mater. 53 (2005), pp. 2169–2179.10.1016/j.actamat.2005.01.031
  • J. Chen, L. Lu, and K. Lu, Hardness and strain rate sensitivity of nanocrystalline Cu, Scr. Mater. 54 (2006), pp. 1913–1918.10.1016/j.scriptamat.2006.02.022
  • D. Gianola, D. Warner, J.-F. Molinari, and K. Hemker, Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al, Scr. Mater. 55 (2006), pp. 649–652.10.1016/j.scriptamat.2006.06.002
  • K. Jonnalagadda, N. Karanjgaokar, I. Chasiotis, J. Chee, and D. Peroulis, Strain rate sensitivity of nanocrystalline Au films at room temperature, Acta Mater. 58 (2010), pp. 4674–4684.10.1016/j.actamat.2010.04.048
  • V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken, Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al, J. Mater. Res. 26 (2011), pp. 1421–1430.10.1557/jmr.2011.156
  • Y.M. Wang, E.M. Bringa, J.M. McNaney, M. Victoria, A. Caro, A.M. Hodge, R. Smith, B. Torralva, B. Remington, C.A. Schuh, H. Jamarkani, and M.A. Meyers, Deforming nanocrystalline nickel at ultrahigh strain rates, Appl. Phys. Lett. 88 (2006), p. 061917.10.1063/1.2173257
  • B. Ahn, R. Mitra, A. Hodge, E.J. Lavernia, and S. Nutt, Strain rate sensitivity studies of cryomilled Al alloy performed by nanoindentation, in Materials Science Forum, E. Yuri and M. Hans Jürgen, eds., Trans Tech Publ, Switzerland, 584–586 (2008), pp. 221–226.
  • Y.M. Wang and E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Mater. Sci. Eng. A 375–377 (2004), pp. 46–52.10.1016/j.msea.2003.10.214
  • Y. Shen, L. Lu, M. Dao, and S. Suresh, Strain rate sensitivity of Cu with nanoscale twins, Scr. Mater. 55 (2006), pp. 319–322.10.1016/j.scriptamat.2006.04.046
  • I.-C. Choi, Y.-J. Kim, Y.M. Wang, U. Ramamurty, and J.-I. Jang, Nanoindentation behavior of nanotwinned Cu: Influence of indenter angle on hardness, strain rate sensitivity and activation volume, Acta Mater. 61 (2013), pp. 7313–7323.10.1016/j.actamat.2013.08.037
  • Y. Liu, J. Hay, H. Wang, and X. Zhang, A new method for reliable determination of strain-rate sensitivity of low-dimensional metallic materials by using nanoindentation, Scr. Mater. 77 (2014), pp. 5–8.10.1016/j.scriptamat.2013.12.022
  • J. Alkorta, J.M. Martínez-Esnaola, and J. Gil Sevillano, Critical examination of strain-rate sensitivity measurement by nanoindentation methods: Application to severely deformed niobium, Acta Mater. 56 (2008), pp. 884–893.
  • T. Kunimine, N. Takata, N. Tsuji, T. Fujii, M. Kato, and S. Onaka, Temperature and strain rate dependence of flow stress in severely deformed copper by accumulative roll bonding, Mater. Trans. 50 (2009), pp. 64–69.10.2320/matertrans.MD200809
  • J.R. Trelewicz and C.A. Schuh, The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation, Acta Mater. 55 (2007), pp. 5948–5958.10.1016/j.actamat.2007.07.020
  • S. Varam, K.V. Rajulapati, K.B.S. Rao, R.O. Scattergood, K.L. Murty, and C.C. Koch, Loading rate-dependent mechanical properties of bulk two-phase nanocrystalline Al–Pb alloys studied by nanoindentation, Metall. Mater. Trans. A 45 (2014), pp. 5249–5258.10.1007/s11661-014-2425-8
  • S. Varam, P. Narayana, M.D. Prasad, D. Chakravarty, K.V. Rajulapati, and K.B.S. Rao, Strain rate sensitivity of bulk multi-phase nanocrystalline Al–W-based alloy, Philos. Mag. Lett. 94 (2014), pp. 582–591.10.1080/09500839.2014.948522
  • U. Dahmen, S. Xiao, S. Paciornik, E. Johnson, and A. Johansen, Magic-size equilibrium shapes of nanoscale Pb inclusions in Al, Phys. Rev. Lett. 78 (1997), pp. 471–474.10.1103/PhysRevLett.78.471
  • T. Mizoguchi and U. Dahmen, 3D shape and orientation of nanoscale Pb inclusions at grain boundaries in Al observed by TEM and STEM tomography, Philos. Mag. Lett. 89 (2009), pp. 104–112.10.1080/09500830802649760
  • S.P. Pemmasani, K.V. Rajulapati, M. Ramakrishna, K. Valleti, R.C. Gundakaram, and S.V. Joshi, Characterization of multilayer nitride coatings by electron microscopy and modulus mapping, Mater. Charact. 81 (2013), pp. 7–18.10.1016/j.matchar.2013.04.003
  • Modulus Mapping User Manual, Hysitron, 2009.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic moduli using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992), pp. 1564–1583.10.1557/JMR.1992.1564
  • W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004), pp. 3–20.10.1557/jmr.2004.19.1.3
  • N. Mukhopadhyay and P. Paufler, Micro-and nanoindentation techniques for mechanical characterisation of materials, Int. Mater. Rev. 51 (2006), pp. 209–245.10.1179/174328006X102475
  • A.A. Elmustafa and D.S. Stone, Indentation size effect in polycrystalline F.C.C. metals, Acta Mater. 50 (2002), pp. 3641–3650.10.1016/S1359-6454(02)00175-1
  • A.A. Elmustafa and D.S. Stone, Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity, J. Mech. Phys. Solids 51 (2003), pp. 357–381.10.1016/S0022-5096(02)00033-9
  • W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46 (1998), pp. 411–425.10.1016/S0022-5096(97)00086-0
  • G. Palumbo, S.J. Thorpe, and K.T. Aust, On the contribution of triple junctions to the structure and properties of nanocrystalline materials, Scr. Metall. Mater. 24 (1990), pp. 1347–1350.10.1016/0956-716X(90)90354-J
  • S. Jang, Y. Purohit, D.L. Irving, C. Padgett, D. Brenner, and R.O. Scattergood, Influence of Pb segregation on the deformation of nanocrystalline Al: Insights from molecular simulations, Acta Mater. 56 (2008), pp. 4750–4761.10.1016/j.actamat.2008.05.024
  • K.V. Rajulapati, R.O. Scattergood, K.L. Murty, G. Duscher, and C.C. Koch, Effect of Pb on the mechanical properties of nanocrystalline Al, Scr. Mater. 55 (2006), pp. 155–158.10.1016/j.scriptamat.2006.03.051
  • K.V. Rajulapati, R.O. Scattergood, K.L. Murty, Z. Horita, T.G. Langdon, and C.C. Koch, Mechanical properties of bulk nanocrystalline aluminum–tungsten alloys, Metall. Mater. Trans. A 39 (2008), pp. 2528–2534.10.1007/s11661-008-9593-3
  • H.W. Sheng, F. Zhou, Z.Q. Hu, and K. Lu, Investigation of Al–Pb nanocomposites synthesized by non-equilibrium processes, J. Mater. Res. 13 (1998), pp. 308–315.10.1557/JMR.1998.0042
  • M.A. Atwater, D. Roy, K.A. Darling, B.G. Butler, R.O. Scattergood, and C.C. Koch, The thermal stability of nanocrystalline copper cryogenically milled with tungsten, Mater. Sci. Eng. A 558 (2012), pp. 226–233.10.1016/j.msea.2012.07.117
  • T.J. Rupert, J.R. Trelewicz, and C.A. Schuh, Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys, J. Mater. Res. 27 (2012), pp. 1285–1294.10.1557/jmr.2012.55
  • G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Company, Boston, MA, 1986.
  • A. Ghosh, On the measurement of strain-rate sensitivity for deformation mechanism in conventional and ultra-fine grain alloys, Mater. Sci. Eng. A 463 (2007), pp. 36–40.10.1016/j.msea.2006.08.122
  • D. Tabor, The hardness and strength of metals, J. Inst. Metals 79 (1951), pp. 1–18.
  • S. Varam, K.V. Rajulapati, and K. Bhanu, Sankara Rao, Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation, J. Alloys Compd. 585 (2014), pp. 795–799.
  • J.J. Niu, J.Y. Zhang, G. Liu, P. Zhang, S.Y. Lei, G.J. Zhang, and J. Sun, Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X=Cr, Zr) multilayer films, Acta Mater. 60 (2012), pp. 3677–3689.10.1016/j.actamat.2012.03.052
  • C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals, Scr. Mater. 49 (2003), pp. 657–662.10.1016/S1359-6462(03)00394-4
  • Y.T. Zhu and X.Z. Liao, Nanostructured metals – Retaining ductility, Nat. Mater. 3 (2004), pp. 351–352.10.1038/nmat1141
  • T. Zhu, J. Li, A. Samanta, H.G. Kim, and S. Suresh, Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals, Proc. Nat. Acad. Sci. USA 104 (2007), pp. 3031–3036.10.1073/pnas.0611097104
  • N.Q. Chinh, T. Csanádi, J. Gubicza, R.Z. Valiev, B.B. Straumal, and T.G. Langdon, The effect of grain boundary sliding and strain rate sensitivity on the ductility of ultrafine-grained materials, Mater. Sci. Forum 667–669 (2011), pp. 677–682.
  • N.Q. Chinh, T. Csanádi, T. Győri, R.Z. Valiev, B.B. Straumal, M. Kawasaki, and T.G. Langdon, Strain rate sensitivity studies in an ultrafine-grained Al–30 wt.% Zn alloy using micro- and nanoindentation, Mater. Sci. Eng. A 543 (2012), pp. 117–120.10.1016/j.msea.2012.02.056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.