436
Views
13
CrossRef citations to date
0
Altmetric
NTMRD V

Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modelling

, , , , , , & show all
Pages 3461-3478 | Received 19 Oct 2015, Accepted 06 Sep 2016, Published online: 27 Sep 2016

References

  • S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam, 1993.
  • A. Zaoui, Continuum micromechanics: A survey, J. Eng. Mech. 128(8) (2002), pp. 808–816.
  • T.K. Bader, K. Hofstetter, C. Hellmich, and J. Eberhardsteiner, The poroelastic role of water in cell walls of the hierarchical composite “softwood”, Acta Mech. 217(1--2) (2011), pp. 75–100.
  • K. Hofstetter, C. Hellmich, and J. Eberhardsteiner,, Development and experimental validation of a continuum micromechanics model for the elasticity of wood, Eur. J. Mech.-A/Solids. 24(6) (2005), pp. 1030–1053.
  • K. Hofstetter, C. Hellmich, J. Eberhardsteiner, and H. Mang, Micromechanical estimates for elastic limit states in wood materials, revealing nanostructural failure mechanisms, Mech. Adv. Mater. Struct. 15(6–7) (2008), pp. 474–484.
  • I. Burgert, M. Eder, K. Frühmann, J. Keckes, P. Fratzl, and S. Stanzl-Tschegg, Properties of chemically and mechanically isolated fibres of spruce (Picea abies [l.] Karst.). Part 3: Mechanical characterisation, Holzforschung 59(3) (2005), pp. 354–357.
  • M. Eder, K. Jungnikl, and I. Burgert, A close-up view of wood structure and properties across a growth ring of norway spruce (picea abies [l] karst.), Trees-Struct. Funct. 23(1) (2009), pp. 79–84.
  • W. Gindl, H. Gupta, T. Schöberl, H. Lichtenegger, and P. Fratzl, Mechanical properties of spruce wood cell walls by nanoindentation, Appl. Phys. A 79(8) (2004), pp. 2069–2073.
  • L. Wagner, T.K. Bader, D. Auty, and K. de Borst, Key parameters controlling stiffness variability within trees: a multiscale experimental-numerical approach, Trees 27(1) (2013), pp. 321–336.
  • K. Hofstetter, C. Hellmich, and J. Eberhardsteiner, Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials, A review and an improved approach, Holzforschung 61(4) (2007), pp. 343–351.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7(06) (1992), pp. 1564–1583.
  • A. Jäger, T. Bader, K. Hofstetter, and J. Eberhardsteiner, The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls, Composites Part A 42(6) (2011), pp. 677–685.
  • I.N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3(1) (1965), pp. 47–57.
  • J. Swadener and G. Pharr, Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution, Philos. Mag. A 81(2) (2001), pp. 447–466.
  • M. Bocciarelli, G. Bolzon, and G. Maier, Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping, Mech. Mater. 37(8) (2005), pp. 855–868.
  • G. Bolzon, G. Maier, and M. Panico, Material model calibration by indentation, imprint mapping and inverse analysis, Int. J. Solids Struct. 41(11–12) (2004), pp. 2957–2975.
  • J. Bucaille, S. Stauss, E. Felder, and J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Mater. 51(6) (2003), pp. 1663–1678.
  • F. Ganneau, G. Constantinides, and F.-J. Ulm, Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials, Int. J. Solids Struct. 43(6) (2006), pp. 1727–1745.
  • X. Chen, N. Ogasawara, M. Zhao, and N. Chiba, On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials, J. Mech. Phys. Solids 55(8) (2007), pp. 1618–1660.
  • R.-B. Adusumalli, R. Raghavan, R. Ghisleni, T. Zimmermann, and J. Michler, Deformation and failure mechanism of secondary cell wall in spruce late wood, Appl. Phys. A 100(2) (2010), pp. 447–452.
  • P.R. Howie, S. Korte, and W.J. Clegg, Fracture modes in micropillar compression of brittle crystals, J. Mater. Res. 27(01) (2012), pp. 141–151.
  • J. Michler, K. Wasmer, S. Meier, F. Östlund, and K. Leifer, Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature, Appl. Phys. Lett. 90(4) (2007), p. 043123.
  • J. Schwiedrzik, R. Raghavan, A. Bürki, V. LeNader, U. Wolfram, J. Michler, and P. Zysset, In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone, Nature Mater. 13(7) (2014), pp. 740–747.
  • X. Maeder, W. Mook, C. Niederberger, and J. Michler, Quantitative stress/strain mapping during micropillar compression, Philos. Mag. 91(7–9) (2011), pp. 1097–1107.
  • S.E. Stanzl-Tschegg, D. Keunecke, and E.K. Tschegg, Fracture tolerance of reaction wood (yew and spruce wood in the TR crack propagation system), J. Mech. Behav. Biomed. Mater. 4(5) (2011), pp. 688–698.
  • S. Yamashita, M. Yoshida, and H. Yamamoto, Relationship between development of compression wood and gene expression, Plant Sci. 176(6) (2009), pp. 729–735.
  • J. Bodig and B.A. Jayne, Mechanics of Wood and Wood Composites, Van Nostrand Reinhold, New York, 1982.
  • W. Gindl, Comparing mechanical properties of normal and compression wood in norway spruce: The role of lignin in compression parallel to the grain, Holzforschung 56(4) (2002), pp. 395–401.
  • A. Tarmian, M. Azadfallah, H. Gholamiyan, and M. Shahverdi Inter-tracheid and cross-field pitting in compression wood and opposite wood of norway spruce (picea abies l.), Notulae Sci. Biologicae. 3(2) (2011), pp. 145–151.
  • R. Raghavan, R.-B. Adusumalli, G. Buerki, S. Hansen, T. Zimmermann, and J. Michler, Deformation of the compound middle lamella in spruce latewood by micro-pillar compression of double cell walls, J. Mater. Sci. 47(16) (2012), pp. 6125–6130.
  • J. Ziegler, J. Biersack, The stopping and range of ions in matter, in Treatise on Heavy-ion Science, D. Bromley, eds., Springer, New York, 1985, pp. 93–129. doi:10.1007/978-1-4615-8103-1\_3.
  • P. Whiting and D. Goring, Chemical characterization of tissue fractions from the middle lamella and secondary wall of black spruce tracheids, Wood Sci. Technol. 16(4) (1982), pp. 261–267.
  • R. Rabe, J.-M. Breguet, P. Schwaller, S. Stauss, F.-J. Haug, J. Patscheider, and J. Michler, Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope, Thin Solid Films 469 (2004), pp. 206–213.
  • H. Zhang, B.E. Schuster, Q. Wei, and K.T. Ramesh, The design of accurate micro-compression experiments, Scr. Mater. 54(2) (2006), pp. 181–186.
  • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0. Available at http://www.R-project.org.
  • M. Rüggeberg, F. Saxe, T.H. Metzger, B. Sundberg, P. Fratzl, and I. Burgert, Enhanced cellulose orientation analysis in complex model plant tissues, J. Struct. Biol. 183(3) (2013), pp. 419–428.
  • A. Uremovic and T. Dokk, Glawischnig, J. Schuseil, B. Saake, A. Borchmann, A. Herrmann, J. Puls, Chromatographische Untersuchungen zur quantitativen Bestimmung der Holzzucker, Holz Roh Werkst. 52(6) (1994), pp. 347–354.
  • J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 241(1226) (1957), pp. 376–396.
  • R. Hill, A self-consistent mechanics of composite materials, J. Mech. Phys. Solids 13(4) (1965), pp. 213–222.
  • G. Tandon and G. Weng, The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites, Polym. Compos. 5(4) (1984), pp. 327–333.
  • T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall. 21(5) (1973), pp. 571–574.
  • Y. Benveniste, A new approach to the application of Mori-Tanaka’s theory in composite materials, Mech. Mater. 6(2) (1987), pp. 147–157.
  • J. Schwiedrzik, U. Wolfram, and P. Zysset, A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales, Biomech. Model. Mechanobiol. 12(6) (2013), pp. 1155–1168.
  • R. Quinson, J. Perez, M. Rink, and A. Pavan, Yield criteria for amorphous glassy polymers, J. Mater. Sci. 32(5) (1997), pp. 1371–1379.
  • T.K. Bader, K. Hofstetter, C. Hellmich, and J. Eberhardsteiner Poromechanical scale transitions of failure stresses in wood: from the lignin to the spruce level, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 90(10--11) (2010), pp. 750–767.
  • R. Newman and J. Hemmingson, Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy, Holzforschung 44(5) (1990), pp. 351–356.
  • P. Fratzl, I. Burgert, and J. Keckes, Mechanical model for the deformation of the wood cell wall, Z. Metallkunde 95(7) (2004), pp. 579–584.
  • W. Gindl and A. Teischinger, Axial compression strength of norway spruce related to structural variability and lignin content, Composites Part A 33(12) (2002), pp. 1623–1628.
  • J. Keckes, I. Burgert, K. Frühmann, M. Müller, K. Kölln, M. Hamilton, M. Burghammer, S.V. Roth, S. Stanzl-Tschegg, and P. Fratzl, Cell-wall recovery after irreversible deformation of wood, Nature Mater. 2(12) (2003), pp. 810–813.
  • B. Budiansky and N.A. Fleck, Compressive failure of fibre composites, J. Mech. Phys. Solids 41(1) (1993), pp. 183–211.
  • S. Kyriakides, R. Arseculeratne, E. Perry, and K. Liechti, On the compressive failure of fiber reinforced composites, Int. J. Solids Struct. 32(6) (1995), pp. 689–738.
  • B.W. Rosen, Mechanics of composite strengthening Fiber Composite Materials, Am. Metals Seminar, Chapter 3, American Society for Metals, Metals Park, OH, 1965, 37–75.
  • A. Argon, Fracture of composites, Treatise on Mater. Sci. Technol. 1 (1972), pp. 79–114.
  • F. Saxe, M. Eder, G. Benecke, B. Aichmayer, P. Fratzl, I. Burgert, and M. Rueggeberg Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering, Plant Methods. 10(25) (2014) doi: 10.1186/1746-4811-10-25.
  • P. Fratzl, I. Burgert, and H.S. Gupta, On the role of interface polymers for the mechanics of natural polymeric composites, Phys. Chemis. Chem. Phys. 6(24) (2004), pp. 5575–5579.
  • W. Chen, G.C. Lickfield, and C.Q. Yang, Molecular modeling of cellulose in amorphous state, Part i: model building and plastic deformation study, Polymer 45(3) (2004), pp. 1063–1071.
  • L. Bertinetti, U.D. Hangen, M. Eder, P. Leibner, P. Fratzl, and I. Zlotnikov, Characterizing moisture-dependent mechanical properties of organic materials: humidity-controlled static and dynamic nanoindentation of wood cell walls, Philos. Mag. 95 (2015), pp. 16–18.
  • T. Ozyhar, S. Hering, and P. Niemz, Moisture-dependent orthotropic tension-compression asymmetry of wood, Holzforschung 67(4) (2013), pp. 395–404.
  • F. Östlund, K. Rzepiejewska-Malyska, K. Leifer, L.M. Hale, Y. Tang, R. Ballarini, W.W. Gerberich, and J. Michler, Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature, Adv. Funct. Mater. 19(15) (2009), pp. 2439–2444.
  • A. Griffith, The phenomena of flow and rupture in solids, Philos. Trans. A 2210 (1921), pp. 163–198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.