184
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Interfacial reactions between Al7075 alloy and BaAl2Si2O8 + CaAl2Si2O8 mixture

, , , &
Pages 3711-3734 | Received 23 May 2016, Accepted 12 Sep 2016, Published online: 04 Oct 2016

References

  • E. Adabifiroozjaei, P. Koshy, and C.C. Sorrell, Assessment of non-wetting materials for use in refractories for aluminium melting furnaces, J. Aust. Ceram. Soc. 51 (2015), pp. 139–145.
  • E. AdabiFiroozjaei, P. Koshy, and C.C. Sorrell, Effects of AlPO4 addition on the corrosion resistance of andalusite-based low-cement castables with molten Al-alloy, J. Eur. Ceram. Soc. 33 (2013), pp. 1067–1075.10.1016/j.jeurceramsoc.2012.11.005
  • E. AdabiFiroozjaei, P. Koshy, and E. Rastkerdar, Effects of different barium compounds on the corrosion resistance of andalusite-based low-cement castables in contact with molten Al-Alloy, Metall. Mater. Trans. B 42 (2011), pp. 901–913.10.1007/s11663-011-9522-5
  • E. AdabiFiroozjaei, P. Koshy, and C.C. Sorrell, Effects of different boron compounds on the corrosion resistance of andalusite-based low-cement castables in contact with molten Al Alloy, Metall. Mater. Trans. B 43 (2012), pp. 5–13.10.1007/s11663-011-9619-x
  • E. AdabiFiroozjaei, A. Saidi, A. Monshi, and P. Koshy, Effects of different calcium compounds on the corrosion resistance of andalusite-based low-cement castables in contact with molten Al-Alloy, Metall. Mater. Trans. B. 42 (2011), pp. 400–411.10.1007/s11663-010-9468-z
  • E. AdabiFiroozjaei, P. Koshy, and C.C. Sorrell, Effects of V2O5 addition on the corrosion resistance of andalusite-based low-cement castables with molten Al-alloy, J. Eur. Ceram. Soc. 32 (2012), pp. 1463–1471.10.1016/j.jeurceramsoc.2012.01.023
  • E. Adabifiroozjaei, P. Koshy, R. Pardehkhorram, E. Rastkerdar, and C.C. Sorrell, Interfacial reactions between BaAl2Si2O8 and molten Al Alloy at 850 degrees C, J. Am. Ceram. Soc. 98 (2015), pp. 3299–3307.10.1111/jace.13650
  • P. Koshy, S. Gupta, P. Edwards, and V. Sahajwalla, Effect of BaSO4 on the interfacial phenomena of high-alumina refractories with Al-alloy, J. Mat. Sci. 46 (2011), pp. 468–478.10.1007/s10853-010-4931-4
  • P. Koshy, S. Gupta, V. Sahajwalla, and P. Edwards, Effect of CaF2 on interfacial phenomena of high alumina refractories with Al Alloy, Metall. Mater. Trans. B. 39 (2008), pp. 603–612.10.1007/s11663-008-9169-z
  • P. Koshy, S. Gupta, V. Sahajwalla, and P. Edwards, Effect of silica on high-temperature interfacial phenomena of monolithic refractories with Al Alloy, Metall. Mater. Trans. B. 39 (2008), pp. 331–339.10.1007/s11663-008-9138-6
  • M. Allahevrdi, S. Afshar, and C. Allaire, Additives and the corrosion resistance of aluminosilicate refractories in molten Al-5 Mg, JOM 50 (1998), pp. 30–34.10.1007/s11837-998-0245-2
  • J.G. Gao, S. Afshar, and C. Allaire, Corrosion kinetics of refractory by molten aluminium, Light Met. 2004 (2004), pp. 619–622.
  • C. Allaire and M. Guermazi, Corrosion of furnace refractories by molten aluminium, Mod. Cast. 90 (2000), pp. 45–48.
  • S. Afshar and C. Allaire, Furnaces: improving low cement castables by non-wetting additives, JOM 53 (2001), pp. 24–27.10.1007/s11837-001-0130-8
  • C. Allaire and P. Desclaux, Effect of alkalis and of a reducing atmosphere on the corrosion of refractories by molten aluminum, J. Am. Ceram. Soc. 74 (1991), pp. 2781–2785.10.1111/jace.1991.74.issue-11
  • E. Adabifiroozjaei, P. Koshy, E. Rastkerdar, and C.C. Sorrell, Interfacial reactions between anorthite (CaAl2Si2O8) and Al 7075 alloy at 850 °C and 1150 °C, J. Am. Ceram. Soc. 99 (2016), pp. 1694–1708.10.1111/jace.2016.99.issue-5
  • M.N. Ibarra, J.M. Almanza, D.A. Cortes, J.C. Escobedo, and R. Martinez-Lopez, Chemical interaction between Ba-celsian (BaAl2Si2O8) and molten aluminum, Ceram. Int. 42 (2016), pp. 3491–3496.10.1016/j.ceramint.2015.10.152
  • P. Koshy, Effect of chemical additives on the interfacial phenomena of high alumina refractories with Al-alloys, Ph.D., The University of New South Wales, Sydney, 2009.
  • K.J. Brondyke, Effect of molten aluminum on alumina-silica refractories, J. Am. Ceram. Soc. 36 (1953), pp. 171–174.10.1111/jace.1953.36.issue-5
  • E. Adabifiroozjaei, P. Koshy, R. Pardehkhorram, E. Rastkerdar, J. Hart, and C.C. Sorrell, Interfacial reactions between BaAl2Si2O8 and molten Al alloy at 1423 K and 1523 K (1150 °C and 1250 °C), Metall. Mater. Trans. B. 46 (2016), pp. 1753–1764.10.1007/s11663-016-0642-9
  • R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A. 32 (1976), pp. 751–767.10.1107/S0567739476001551
  • P.H. Ribbe, Feldspar Mineralogy, Mineralogical Society of America, 1975.
  • M.W. Dougill, Crystal structure of calcium monoaluminate, Nature. 180 (1957), pp. 292–293.10.1038/180292a0
  • E.F. Osborn, and A. Muan, Phase Equilibrium Diagrams of Oxide Systems, Plate 1. The System CaO–Al2O3–SiO2, American Ceramic Society and Edward Orton, Ir., Ceramic Foundation, Columbus, OH, 1960.
  • E.M. Levin and H.F. McMurdie, Phase Diagram for Ceramists Vol. III, American Ceramic Society, Westerville, OH, 1975, p. 220.
  • X. Ye, W. Zhuang, C. Deng, W. Yuan, and Z. Qiao, Thermodynamic investigation on the Al2O3–BaO binary system, Calphad. 30 (2006), pp. 349–353.10.1016/j.calphad.2005.12.004
  • M. Boyer, S. Alahrache, C. Genevois, M. Licheron, F.X. Lefevre, C. Castro, G. Bonnefont, G. Patton, F. Moretti, C. Dujardin, G. Matzen, and M. Allix, Enhanced transparency through second phase crystallization in BaAl4O7 scintillating ceramics, Cryst. Growth Des. 16 (2016), pp. 386–395.10.1021/acs.cgd.5b01374
  • G. Patton, F. Moretti, A. Belsky, K. Al Saghir, S. Chenu, G. Matzen, M. Allix, and C. Dujardin, Light yield sensitization by X-ray irradiation of the BaAl4O7:Eu2+ ceramic scintillator obtained by full crystallization of glass, Phys. Chem. Chem. Phys. 16 (2014), pp. 24824–24829.10.1039/C4CP04064C
  • M. Allix, S. Alahrache, F. Fayon, M. Suchomel, F. Porcher, T. Cardinal, and G. Matzen, Highly transparent BaAl4O7 polycrystalline ceramic obtained by full crystallization from glass, Adv. Mater. 24 (2012), pp. 5570–5575.10.1002/adma.201202282
  • K.T. Lee and P.B. Aswath, Kinetics of the hexacelsian to celsian transformation in barium aluminosilicates doped with CaO, Int. J. Inorg. Mater. 3 (2001), pp. 687–692.10.1016/S1466-6049(01)00190-8
  • K.T. Lee and P.B. Aswath, Role of mineralizers on the hexacelsian to celsian transformation in the barium aluminosilicate (BAS) system, Mater. Sci. Eng. A 352 (2003), pp. 1–7.10.1016/S0921-5093(02)00118-1
  • E. Jackovics, I. Madzhulis, V. Frishfelds, and B. Nacke, Influence of melt flow and temperature on erosion of refractory and deposit formation in aluminium melting furnaces, Energy Convers. Manage. 43 (2002), pp. 345–352.10.1016/S0196-8904(01)00113-3
  • R.B.C. Cayless, Alloy and temperature designation systems for aluminum and aluminum alloys, in ASM handbook, J. R. Davis ed., ASM International, Materials Park, OH, 1990, pp. 15 –38.
  • R.E. Newnham and H.D. Megaw, The crystal structure of celsian (barium feldspar), Acta Crystallogr. 13 (1960), pp. 303–312.10.1107/S0365110X60000765
  • P.H. Ribbe, The chemistry, structure and nomenclature of feldspars, in Feldspar Mineralogy, P.H. Ribbe, ed., Mineralogical Society of America, United States of America, 1983, pp. 1–20.
  • E. Burzo, 8.1.6.3 Feldspars, in Tectosilicates: Part α, H. P. J. Wijn ed., Springer, Berlin, 2011, pp. 113–416.
  • F. Franklin, J. Foit, and R.P. Donald, The anorthite crystal structure at 410 and 830 °C, Am. Mineral. 58 (1973), pp. 665–675.
  • J.V. Smith, Feldspar Minerals: Crystal Structure and Physical Properties 1, Springer, Berlin Heidelberg, 2013.
  • D.R. Askeland, P.P. Fulay, and W.J. Wright, Solid Solutions and Phase Equilibrium, in The Science and Engineering of Materials, Cengage Learning, Stamford, CT, 2010, pp. 375–412.
  • E. Bruno and G. Gazzoni, On the system Ba [Al2Si2O8]-Ca [Al2Si2O8], Contrib. Mineral. Petrol. 25 (1970), pp. 144–152.10.1007/BF00389783
  • A.S. Radosavljević-Mihajlović, M.D. Prekajski, J. Zagorac, A.M. Došen, S.S. Nenadović, and B.Z. Matović, Preparation, structural and microstructural properties of Ba0.64Ca0.32Al2Si2O8 ceramics phase, Ceram. Int. 38 (2012), pp. 2347–2354.10.1016/j.ceramint.2011.10.087
  • M. Hanabe, V. Jayaram, and T.A. Bhaskaran, Growth of Al2O3/Al composites from Al–Zn alloys, Acta Mater. 44 (1996), pp. 819–829.10.1016/1359-6454(95)00185-9
  • M. Sindel, N.A. Travitzky, and N. Claussen, Influence of magnesium–aluminum spinel on the directed oxidation of molten aluminum-alloys, J. Am. Ceram. Soc. 73 (1990), pp. 2615–2618.10.1111/jace.1990.73.issue-9
  • H. Venugopalan and T. DebRoy, Growth stage kinetics in the synthesis of Al2O3/Al composites by directed oxidation of Al–Mg and Al–Mg–Si alloys, J. Eur. Ceram. Soc. 16 (1996), pp. 1351–1363.10.1016/0955-2219(96)00068-4
  • H. Venugopalan, K. Tankala, and T. DebRoy, Kinetics of directed oxidation of Al–Mg alloys in the initial and final stages of synthesis of Al2O3/Al composites, Mat. Sci. Eng. A. 210 (1996), pp. 64–75.10.1016/0921-5093(95)10072-5
  • H. Venugopalan and T. DebRoy, Kinetics of directed oxidation of Al–Mg alloys into Al2O3 preforms, Mat. Sci. Eng. A. 232 (1997), pp. 39–46.10.1016/S0921-5093(97)00088-9
  • J.L. Murray and A.J. McAlister, The Al–Si (Aluminum–Silicon) system, Bull. Alloy Phase Diagrams 5 (1984), pp. 74–84.10.1007/BF02868729
  • R.C. Ropp, Encyclopedia of the Alkaline Earth Compounds, Elsevier Science, 2012.
  • E.M. Levin, C.R. Robbins, and H.F. McMurdie, Phase Diagram for Ceramists, Vol. 2, The American Ceramic Society, MSI Materials Science International Services GmbH, Stuttgart, 1969.
  • R.S.-F.a. MSIT, Al–Ca–Si Ternary Phase Diagram Evaluation, MSI Materials Science International Services GmbH, Stuttgart, 2004.
  • A. Shukla, Development of a critically evaluated thermodynamic databse for the systems containing alkaline-earth oxides, Ph.D., École Polytechnique de Montréal, 2012.
  • G.N. Shabanova, V.V. Taranenkova, A.N. Korogodskaya, and E.V. Khristich, Structure of the BaO–Al2O3–SiO2 system (A review), Glass Ceram. 60 (2003), pp. 43–46.10.1023/A:1023846418115
  • R.S.-F.a. MSIT., Al–Ba–Si Ternary Phase Diagram Evaluation, MSI Materials Science International Services GmbH, Stuttgart, 1990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.