209
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Theoretical investigations of the EPR g factors and the local structures for Ni3+ in LiAlyCo1–yO2 at various Al concentrations

, , , &
Pages 3735-3745 | Received 27 Jun 2016, Accepted 18 Sep 2016, Published online: 29 Sep 2016

References

  • E.R. Rose, H. Zhou, C. Dhital, K. Saravanan, K.K. Andrew, G.Y. Chen, A. Huq, M.D. Frank, and J. Nanda, Synthesis, structure, and electrochemical performance of high capacity Li2Cu0.5Ni0.5O2 cathodes, Chem. Mater. 27 (2015), pp. 6746–6754.
  • Y. Idemoto, Y. Tsukada, and N. Kitamura, Crystal and electronic structures, thermodynamic stability, and cathode performance of Li(Ni Co, M)O2 (M = Cu, Zn), Solid State Ionics 279 (2015), pp. 6–10.10.1016/j.ssi.2015.07.007
  • A. Van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, and J. Hafner, First-principles investigation of phase stability in LixCoO2, Phys. Rev. B 58 (1998), pp. 2975–2987.10.1103/PhysRevB.58.2975
  • E.J. Oh, T.W. Kim, K.M. Lee, M.S. Song, A.Y. Jee, S.T. Lim, H.W. Ha, M. Lee, J.H. Choy, and S.J. Hwang, Unilamellar nanosheet of layered manganese cobalt nickel oxide and its heterolayered film with polycations, ACS Nano 4 (2010), pp. 4437–4444.10.1021/nn100286u
  • R. Alcantara, P. Lavela, J.L. Tirado, E. Zhecheva, and R. Stoyanova, Recent advances in the study of layered lithium transition metal oxides and their application as intercalation electrodes, J. Solid State Electrochem. 3 (1999), pp. 121–134.
  • T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells, Electrochim. Acta 38 (1993), pp. 1159–1167.10.1016/0013-4686(93)80046-3
  • R. Stoyanova, E. Zhecheva, R. Alcantara, and L.T. Jose, Local coordination of low-spin Ni3+ probes in trigonal LiAlyCo1–yO2 monitored by HF-EPR, J. Phys. Chem. B 108 (2004), pp. 4053–4057.10.1021/jp0376119
  • G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, and B. Huang, Identification of cathode materials for lithium batteries guided by first-principles calculations, Nature 392 (1998), pp. 694–696.10.1038/33647
  • C. Han, J. Yoon, W. Cho, and H. Jang, Electrochemical properties of LiNi0.8Co0.2−xAlxO2 prepared by a sol–gel method, J. Power Sources 136 (2004), pp. 132–138.10.1016/j.jpowsour.2004.05.006
  • M. Guilmard, A. Rougier, M. Grüne, L. Croguennec, and C. Delmas, Effects of aluminum on the structural and electrochemical properties of LiNiO2, J. Power Sources 115 (2003), pp. 305–314.10.1016/S0378-7753(03)00012-0
  • C. Chen, J. Liu, M. Stoll, G. Henriksen, D. Vissers, and K. Amine, Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries, J. Power Sources 128 (2004), pp. 278–285.10.1016/j.jpowsour.2003.10.009
  • K. Möbius, High-field/high-frequency EPR/ENDOR – A powerful new tool in photosynthesis research, Appl. Magn. Reson. 9 (1995), pp. 389–407.10.1007/BF03161962
  • W. Hagen, High-frequency EPR of transition ion complexes and metalloproteins, Coord. Chem. Rev. 190–192 (1999), pp. 209–229.10.1016/S0010-8545(99)00079-X
  • K.K. Anderson and A.L. Barra, The use of high field/frequency EPR in studies of radical and metal sites in proteins and small inorganic models, Spectrochim. Acta, Part A 58 (2002), pp. 1101–1112.10.1016/S1386-1425(01)00700-4
  • J. Minki, N. Mijung, and O. Pilgum, A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium-ion batteries, Adv. Energy Mater. 4 (2014), pp. 1301583-1–1301583-8.
  • K. Kleiner, D. Dixon, P. Jakes, J. Melke, M. Yavuz, C. Roth, K. Nikolowski, V. Liebau, and H. Ehrenberg, Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries, J. Power Sources 273 (2015), pp. 70–82.10.1016/j.jpowsour.2014.08.133
  • Y. Cho, P. Oh, and J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer, Nano Lett. 13 (2013), pp. 1145–1152.10.1021/nl304558t
  • M.Q. Kuang, S.Y. Wu, Z.H. Zhang, and B.T. Song, Investigations on the anisotropic g Factors of the Ni3+ site in La2Ni0.5Li0.5O4, Acta Phys. Pol., A 123 (2013), pp. 734–736.10.12693/APhysPolA.123.734
  • S.Y. Wu, J.Z. Lin, Q. Fu, and H.M Zhang, Investigations on the impurity displacements and the g factors of the two tetragonal Ni3+ centres in SrTiO3, Phys. Scr. 75 (2007), pp. 147–151.10.1088/0031-8949/75/2/005
  • P.L.W. Tregenna-Piggott, M.C.M. O’Brien, J.R. Pilbrow, H.U. Güdel, S.P. Best, and C. Noble, Paramagnetism of caesium titanium alum and the Jahn–Teller interaction, J. Chem. Phys. 107 (1997), pp. 8275–8291.10.1063/1.475029
  • R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A 32 (1976), pp. 751–767.10.1107/S0567739476001551
  • M. Moreno, M.T. Barriuso, and J.A. Aramburu, Impurity-ligand distances derived from magnetic resonance and optical parameters, Appl. Magn. Reson. 3 (1992), pp. 283–304.10.1007/BF03166698
  • H.M. Zhang, W.B. Xiao, and X. Wan, Theoretical investigation for the EPR g factors and the local structure for the two tetragonal Ni3+ centers in ACoO2 (A = H, Li), J. Alloys Compd. 583 (2014), pp. 244–247.10.1016/j.jallcom.2013.08.185
  • A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London, 1986.
  • J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance, Oxford Press, Clarendon, TX, 1990.
  • S.Y. Wu, X.Y. Gao, J.Z. Lin, and Q. Fu, Theoretical investigations on the local structures and the g factors of three Ni3+ centers in LaSrAl1−xNixO4, J. Alloys Compd. 424 (2006), pp. 55–59.10.1016/j.jallcom.2005.12.076
  • R. Lacroix, U. Hochli, and K.A. Muller, Strong field g-value calculation for d7 ions in octahedral surroundings, Helv. Phys. Acta 37 (1964), pp. 627–629.
  • D.J. Newman and B. Ng, The superposition model of crystal fields, Rep. Prog. Phys. 52 (1989), pp. 699–762.10.1088/0034-4885/52/6/002
  • H.M. Zhang, S.Y. Wu, M.Q. Kuang, and Z.H. Zhang, Investigation of the EPR parameters and local structures for Cu2+ in Bis(L-asparaginato) M(II) catalysts (M=Zn, Cd, Mg), J. Phys. Chem. Solids 73 (2012), pp. 846–850.
  • H.M. Zhang, S.Y. Wu, G.D. Lu, L.H. Wei, and Z.H. Zhang, Studies on the defect structures for two Rh2+ centers in LiD, J. Alloys Compd. 464 (2008), pp. 18–22.10.1016/j.jallcom.2007.10.002
  • S.Y. Wu, X.Y. Gao, J.Z. Lin, Q. Fu, and G.D. Lu, Studies on the local structures of the substitutional and interstitial Ni3+ centers in rutile, Chem. Phys. 328 (2006), pp. 26–32.10.1016/j.chemphys.2006.06.004
  • D.S. McClure, Optical spectra of transition-metal ions in corundum, J. Chem. Phys. 36 (1962), pp. 2757–2779.10.1063/1.1732364
  • K.A. Müller, W. Berlinger, and R.S. Rubins, Observation of two charged states of a nickel–oxygen vacancy pair in SrTiO3 by paramagnetic resonance, Phys. Rev. 186 (1969), pp. 361–371.10.1103/PhysRev.186.361
  • D. Hernández, F. Rodrı́guez, M. Moreno, and H.U. Güdel, Pressure dependence of the crystal field spectrum of the NH4MnCl3 perovskite: Correlation between 10Dq, Ne and Nt, and the Mn–Cl distance in MnCl64− complexes, Phys. B: Condens. Matter 265 (1999), pp. 186–190.10.1016/S0921-4526(98)01369-6
  • M. Moreno, M.T. Barriuso, and J.A. Aramburu, The Huang-Rhys factor S(a1g) for transition-metal impurities: A microscopic insight, J. Phys.: Condens. Matter 4 (1992), pp. 9481–9488.10.1088/0953-8984/4/47/027
  • E. Clementi and D.L. Raimondi, Atomic screening constants from SCF functions, J. Chem. Phys. 38 (1963), pp. 2686–2689.10.1063/1.1733573
  • E. Clementi, D.L. Raimondi, and W.P. Reinhardt, Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electronsm, J. Chem. Phys. 47 (1967), pp. 1300–1307.10.1063/1.1712084
  • K.H. Karlsson and T. Perande, Linear trends aiding interpretation and prediction of optical spectra of transtion metal ions, Chem. Script. 3 (1973), pp. 201–205.
  • Y.V. Yablokov and T.A. Ivanova, The labile magnetic structure of JT copper and nickel complexes in the layered oxides, Coord. Chem. Rev. 190–192 (1999), pp. 1255–1267.10.1016/S0010-8545(99)00173-3
  • R.R. Urbano, A. Garcia, E. Granado, J.A. Sanjurjo, and I. Torriani, Structural effects in the EPR spectra of Ni3+ in La2Ni0.5Li0.5O4, Phys. Rev. B 62 (2000), pp. 9593–9598.10.1103/PhysRevB.62.9593
  • L. Pauling, The Nature of Chemical Bond, Cornell University Press, New York, 1960.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.