349
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A molecular dynamics study of the effect of helium clusters on grain boundary migration in bcc iron

, &
Pages 3746-3774 | Received 10 May 2016, Accepted 19 Sep 2016, Published online: 04 Oct 2016

References

  • J.W. Cahn, The impurity-drag effect in grain boundary motion, Acta Metall. 10 (1962), pp. 789–798.
  • K. Lücke and K. Detert, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities, Acta Metall. 5 (1957), pp. 628–637.
  • M. Hillert, The role of interfaces in phase transformations, in The Mechanisms of Phase Transformations in Crystalline Solids, The Institute of Metals, 1968, pp. 231–247.
  • M. Hillert, Solute drag in grain boundary migration and phase transformations, Acta Mater. 52 (2004), pp. 5289–5293.
  • C.S. Smith, Grains, phases and interfaces: An interpretation of microstructure, Trans. AIME 175 (1949), pp. 15–51.
  • E. Nes, N. Ryum, and O. Hunderi, On the zener drag, Acta Metall 33 (1985), pp. 11–22.
  • G. Gottstein and L. Shvindlerman, Theory of grain boundary motion in the presence of mobile particles, Acta Metall. Mater. 41 (1993), pp. 3267–3275.
  • V.Y. Novikov, On grain growth in the presence of mobile particles, Acta Mater. 58 (2010), pp. 3326–3331.
  • N. Gao, M. Victoria, J. Chen, and H. Van Swygenhoven, Helium-vacancy cluster in a single bcc iron crystal lattice, J. Phys.: Condens. Matter 23 (2011), p. 245403.
  • K. Ono, K. Arakawa, K. Hojou, M. Oohasi, R.C. Birtcher, and S.E. Donnely, Quantitative study of brownian motion of helium bubbles in fcc metals, J. Electron Microsc. 51(suppl 1) (2002), pp. S245–S251.
  • E.A. Grey and G.T. Higgins, Solute limited grain boundary migration: A rationalisation of grain growth, Acta Metall. 21 (1973), pp. 309–321.
  • J.P. Drolet and A. Galibois, Altering the time cycle of heat treatment by preannealing prior to grain growth, Met. Trans. 2 (1971), pp. 53–64.
  • M. Fiset, S. Bercovici, and A. Galibois, A new insight into grain growth kinetics in terms of polygonized sub-structure development, Can. Metall. Q. 13 (1974), pp. 287–296.
  • A. Galibois, H. Poliquin, and B.B. Rath, Comment on “solute limited grain boundary migration: A rationalization of grain growth”, Scr. Metall. 8 (1974), pp. 1415–1418.
  • H. Trinkaus and B.N. Singh, Helium accumulation in metals during irradiation - where do we stand?, J. Nucl. Mater. 323 (2003), pp. 229–242.
  • R. Kemp, G. Cottrell, and H.K.D.H. Bhadeshia, Classical thermodynamic approach to void nucleation in irradiated materials, Energy Materials 1 (2006), pp. 103–105.
  • P.L. Lane and P.J. Goodhew, Helium bubble nucleation at grain boundaries, Phil. Mag. A 48 (1993), pp. 965–986.
  • C.C. Fu and F. Willaime, Ab initio study of helium in α-fe: Dissolution, migration and clustering with vacancies, Phys. Rev. B 72 (2005), p. 064117.
  • T. Seletskaia, Y.N. Osetsky, R.E. Stoller, and G.M. Stocks, Magnetic interactions influence the properties of helium defects in iron, Phys. Rev. Lett. 94 (2005), p. 046403.
  • T. Seletskaia, Y.N. Osetsky, R.E. Stoller, and G.M. Stocks, Calculation of helium defect clustering properties in iron using a multi-scale approach, J. Nucl. Mater. 351 (2006), pp. 109–118.
  • C.C. Fu and F. Willaime, Interaction between helium and self-defects in α iron from first principles, J. Nucl. Mater. 367–370 (2007), pp. 244–250.
  • N. Juslin and K. Nordlund, Pair potential for fe-he, J. Nucl. Mater. 382 (2008), pp. 143–146.
  • R. Stoller, S. Golubov, P. Kamenski, T. Seletskaia, and Y. Osetsky, Implementation of a new fe-he three-body interatomic potential for molecular dynamics simulations, Philos. Mag. 90 (2010), pp. 923–934.
  • F. Gao, H. Deng, H. Heinisch, and R. Kurtz, A new fe-he interatomic potential based on ab initio calculations in α-fe, J. Nucl. Mater. 418 (2011), pp. 115–120.
  • N. Gao, H. Van Swygenhoven, M. Victoria, and J. Chen, Formation of dislocation loops during he clustering in bcc fe, J. Phys.: Condens. Matter 23 (2011), p. 442201.
  • D.M. Stewart, Y.N. Osetsky, and R.E. Stoller, Atomistic study of helium bubbles in fe: equilibrium state, MRS Proceedings 1298 (2011), pp. 79–83.
  • L. Yang, H.Q. Deng, F. Gao, H.L. Heinisch, and R.J. Kurtz, Atomistic studies of nucleation of he clusters and bubbles in bcc iron, Nucl. Instrum. Methods. Phys. Res. Sect. B. 303 (2013), pp. 68–71.
  • R.E. Stoller and Y.N. Osetsky, An atomistic assessment of helium behavior in iron, J. Nucl. Mater. 455 (2014), pp. 258–262.
  • X. Gai, T. Lazauskas, R. Smith, and S.D. Kenny, Helium bubbles in bcc fe and their interactions with irradiation, J. Nucl. Mater. 462 (2015), pp. 382–290.
  • J. Hetherly, E. Martinez, M. Nastasi, and A. Caro, Helium bubble growth at bcc twist grain boundaries, J. Nucl. Mater. 419 (2011), pp. 201–207.
  • M.J. Demkowicz, A. Misra, and A. Caro, The role of interface structure in controlling high helium concentrations, Curr. Opin. Solid State Mater. Sci. 16 (2012), pp. 101–108.
  • T. Suzudo, T. Tsuru, M. Yamaguchi, and H. Kaburaki, An atomistic modeling of he bubble stability at grain boundaries in alpha-fe, J. Nucl. Mater. 442 (2013), pp. S655–S659.
  • L. Yang, F. Gao, R.J. Kurtz, and X.T. Zu, Atomistic simulations of helium clustering and grain boundary reconstruction in alpha-iron, Acta Mater. 82 (2015), pp. 275–286.
  • L. Yang, F. Gao, R.J. Kurtz, X.T. Zu, S.M. Peng, X.G. Long, and X.S. Zhou, Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study, Acta Mater. 97 (2015), pp. 86–93.
  • L. Zhang, C.C. Fu, E. Hayward, and G.H. Lu, Properties of he-clustering in α-fe grain boundaries, J. Nucl. Mater. 459 (2015), pp. 247–258.
  • A.T. Wicaksono, M. Militzer, and C.W. Sinclair, Atomistic simulations of the effect of helium clusters on grain boundary mobility in iron, IOP Conf. Ser.: Mater. Sci. Eng. 89 (2015), p. 012048.
  • G.R. Odette and D.T. Hoelzer, Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset, JOM 62 (2010), pp. 84–92.
  • S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.
  • J. Li, Atomeye: An efficient atomistic configuration viewer, Modell. Simul. Mater. Sci. Eng. 11 (2003), pp. 173–177.
  • G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev, Development of an interatomic potential for phosphorus impurities in a-iron, J. Phys.: Condens. Matter 16 (2004), p. S2629.
  • R.A. Aziz, A.R. Janzen, and M.R. Moldover, Ab initio calculations for helium: a standard for transport property measurements, Phys. Rev. Lett. 74 (1995), pp. 1586–1589.
  • X.T. Zu, L. Yang, F. Gao, S.M. Peng, H.L. Heinisch, X.G. Long, and R.J. Kurtz, Properties of helium defects in bcc and fcc metals investigated with density functional theory, Phys. Rev. B 80 (2009), p. 054104.
  • L. Zhang, C.C. Fu, and G.H. Lu, Energetic landscape and diffusion of he in α-fe grain boundaries from first principles, Phys. Rev. B 87 (2013), p. 134107.
  • H. Zhang, M. Upmanyu, and D.J. Srolovitz, Curvature driven grain boundary migration in aluminum: molecular dynamics simulations, Acta Mater. 53 (2005), pp. 79–86.
  • A.T. Wicaksono, C.W. Sinclair, and M. Militzer, An atomistic study on the correlation between the migration of planar and curved grain boundaries, Comp. Mater. Sci. 117 (2016),pp. 397–405.
  • H.Q. Deng, W.Y. Hu, F. Gao, H.L. Heinisch, S.Y. Hu, Y.L. Li, and R.J. Kurtz, Diffusion of small he clusters in bulk and grain boundaries in α-fe, J. Nucl. Mater. 442 (2013), pp. S667–S673.
  • A.T. Wicaksono, Atomistic simulations of dynamic interaction between grain boundaries and solute clusters, Ph.D. diss., The University of British Columbia, 2015.
  • K.G.F. Janssens, D. Olmsted, E.A. Holm, S.M. Foiles, S.J. Plimpton, and P.M. Derlet, Computing the mobility of grain boundaries, Nat. Mater. 5 (2006), pp. 124–127.
  • D.L. Olmsted, E.A. Holm, and S.M. Foiles, Survey of computed grain boundary properties in face-centered cubic metals, ii. grain boundary mobility, Acta Mater. 57 (2009), pp. 3704–3713.
  • A.M. Andrew, Another efficient algorithm for convex hulls in two dimensions, Inform. Process. Lett. 9 (1979), pp. 216–219.
  • J. O’Rourke, Computational Geometry in C, Cambridge University Press, Cambridge, 1998.
  • C. Herring, Some theorems on the free energies of crystal surfaces, Phys. Rev. 82 (1951), p. 87.
  • T. Frolov and Y. Mishin, Temperature dependence of the surface free energy and surface stress: An atomistic calculation for cu(110), Phys. Rev. B 79 (2009), p. 045430.
  • E.D. Hondros, The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron, Proc. Roy. Soc. London A 286 (1965), pp. 479–498.
  • E.A. Clark, R. Yeske, and H.K. Birnbaum, The effect of hydrogen on the surface energy of nickel, Met. Trans. A 11 (1980), pp. 1903–1908.
  • R. Kirchheim, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. i. theoretical background, Acta Mater 55 (2007), pp. 5129–5138.
  • R. Kirchheim, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: Ii. experimental evidence and consequences, Acta Mater 55 (2007),pp. 5139–5148.
  • D. McLean, Grain Boundaries in Metals, Clarendon Press, Oxford, 1957.
  • V. Pratt, Direct least-squares fitting of algebraic surfaces, ACM Computer Graphics 21 (1987), pp. 145–152.
  • J. Ward Jr, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc. 58 (1963), pp. 236–244.
  • G. Lance and W. Williams, A general theory of classificatory sorting strategies i. hierarchical systems, Comput. J. 9 (1967), pp. 373–380.
  • G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms and Applications, SIAM, Philadelphia, PA, 2007.
  • C.B. Barber, D.P. Dobkin, and H.T. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Softw. 22 (1996), pp. 469–483.
  • S.M. Masteller and C.L. Bauer, Experimental techniques, in Recrystallization of Metallic Materials, Dr. Riederer Verlag GmbH, Stuttgart, 1978.
  • V.G. Sursaeva, B.B. Straumal, A.S. Gornakova, L.S. Shvindlerman, and G. Gottstein, Effect of faceting on grain boundary motion in zn, Acta Mater. 56 (2008), pp. 2728–2734.
  • C. Günster, D.A. Molodov, and G. Gottstein, Migration of grain boundaries in zn, Acta Mater. 61 (2013), pp. 2363–2375.
  • M. Upmanyu, R.W. Smith, and D.J. Srolovitz, Atomistic simulation of curvature driven grain boundary migration, Interf. Sci. 6 (1998), pp. 41–58.
  • M.I. Mendelev and Y. Mishin, Molecular dynamics study of self-diffusion in bcc fe, Phys. Rev. B 80 (2009), p. 144111.
  • M. Upmanyu, D.J. Srolovitz, G. Gottstein, and L.S. Shvindlerman, Vacancy generation during grain boundary migration, Interf. Sci. 6 (1998), pp. 289–300.
  • M.A. Tschopp, F. Gao, L. Yang, and K.N. Solanki, Binding energetic of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-fe, J. Appl. Phys. 115 (2014), p. 033503.
  • G. Gottstein and L. Shvindlerman, Grain Boundary Migration in Metals, CRC Press, Boca Raton, 2010.
  • I.R. Brearley and D.A. MacInnes, An improved equation of state for inert gases at high pressures, J. Nucl. Mater. 95 (1980), pp. 239–252.
  • B. Glam, S. Eliezer, D. Moreno, and D. Eliezer, Helium bubbles formation in aluminum: Bulk diffusion and near-surface diffusion using tem observations, J. Nucl. Mater. 392 (2009),pp. 413–419.
  • A. Caro, D. Schwen, J. Hetherly, and E. Martinez, The capillarity equation at the nanoscale: gas bubbles in metals, Acta Mater 89 (2015), pp. 14–21.
  • L. Anand and J. Gurland, The relationship between the size of cementite particles and the subgrain size in quenched-and-tempered steels, Metall. Trans. A 6 (1975), pp. 928–931.
  • C.J. Tweed, N. Hansen, and B. Ralph, Grain growth in samples of aluminum containing alumina particles, Metall. Trans. A 14 (1983), pp. 2235–2243.
  • D.J. Srolovitz, M.P. Anderson, G.S. Grest, and P.S. Sahni, Computer simulation of grain growth-iii. influence of a particle dispersion, Acta Metall 32 (1984), pp. 1429–1438.
  • A.D. Rollett, D.J. Srolovitz, M.P. Anderson, and R.D. Doherty Computer simulation of recrystallization-iii. influence of dispersion of fine particles, Acta Metall. Mater. 40 (1992),pp. 3475–3495.
  • E.S. Machlin, Theory of solute atom limited grain boundary migration, Trans. AIME 224 (1962), pp. 1153–1167.
  • E. Hersent, K. Marthinsen, and E. Nes, The effect of solute atoms on grain boundary migration: a solute pinning approach, Metall. Mater. Trans. A 44 (2013), pp. 3364–3375.
  • E. Hersent, K. Marthinsen, and E. Nes, On the effect of atoms in solid solution on grain growth kinetics, Metall. Mater. Trans. A 45 (2014), pp. 4882–4490.
  • K.T. Aust and J.W. Rutter, Grain boundary migration in high-purity lead and dilute lead-tin alloys, Trans. AIME 215 (1959), pp. 119–127.
  • K.T. Aust and J.W. Rutter, Temperature dependence of grain boundary migration in high-purity lead containing small additions of tin, Trans. AIME 215 (1959), pp. 820–831.
  • M. Hillert and B. Sundman, A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys, Acta Metall. 24 (1976), pp. 731–743.
  • M. Greenwood, C. Sinclair, and M. Militzer, Phase field crystal model of solute drag, Acta Mater. 60 (2012), pp. 5752–5761.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.