795
Views
26
CrossRef citations to date
0
Altmetric
NTMRD V

Deformation behaviour of body centered cubic iron nanopillars containing coherent twin boundaries

&
Pages 3502-3523 | Received 18 May 2016, Accepted 20 Sep 2016, Published online: 01 Oct 2016

References

  • L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science 323 (2009), pp. 607–610.10.1126/science.1167641
  • X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature 464 (2010), pp. 877–880.10.1038/nature08929
  • J. Wang, F. Sansoz, J. Huang, Y. Liu, S. Sun, Z. Zhang, and S.X. Mao, Near-ideal theoretical strength in gold nanowires containing angstrom scale twins, Nat. Commun. 4 (2013), Article ID. 1742.10.1038/ncomms2768
  • E.W. Qin, L. Lu, N.R. Tao, and K. Lu, Enhanced fracture toughness of bulk nanocrystalline Cu with embedded nanoscale twins, Scr. Mater. 60 (2009), pp. 539–542.10.1016/j.scriptamat.2008.12.012
  • A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh, Fracture toughness and fatigue crack growth characteristics of nanotwinned copper, Acta Mater. 59 (2011), pp. 2437–2446.10.1016/j.actamat.2010.12.043
  • L. Liu, J. Wang, S.K. Gong, and S.X. Mao, Atomistic observation of a crack tip approaching coherent twin boundaries, Sci. Rep. 4 (2014), Article ID. 04397.
  • C. Deng and F. Sansoz, Effects of twin and surface facet on strain-rate sensitivity of gold nanowires at different temperatures, Phys. Rev. B 81 (2010), p. 155430.10.1103/PhysRevB.81.155430
  • O. Anderoglu, A. Misra, H. Wang, and X. Zhang, Thermal stability of sputtered Cu films with nanoscale growth twins, J. Appl. Phys. 103 (2008), p. 094322.10.1063/1.2913322
  • J. Wang, N. Li, and A. Misra, Structure and stability of Σ3 grain boundaries in face centered cubic metals, Philos. Mag. 93 (2013), pp. 315–327.10.1080/14786435.2012.716908
  • L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science 304 (2004), pp. 422–426.10.1126/science.1092905
  • T. Zhu and H. Gao, Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling, Scr. Mater. 66 (2012), pp. 843–848.10.1016/j.scriptamat.2012.01.031
  • A.J. Cao, Y.G. Wei, and S.X. Mao, Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries, Appl. Phys. Lett. 90 (2007), p. 151909.10.1063/1.2721367
  • Y. Zhang and H. Huang, Do twin boundaries always strengthen metal nanowires? Nanoscale Res. Lett. 4 (2009), pp. 34–38.10.1007/s11671-008-9198-1
  • F. Hammami and Y. Kulkarni, Size effects in twinned nanopillars, J. Appl. Phys. 116 (2014), p. 033512.10.1063/1.4890541
  • Y. Wei, Anisotropic size effect in strength in coherent nanowires with tilted twins, Phys. Rev. B 84 (2011), p. 014107.10.1103/PhysRevB.84.014107
  • G. Sainath and B.K. Choudhary, Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars, Phys. Lett. A 379 (2015), pp. 1902–1905.10.1016/j.physleta.2015.05.027
  • J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York, 1968.
  • Y. Shibuta, S. Takamoto, and T. Suzuki, A molecular dynamics study of the energy and structure of the symmetric tilt boundary of iron, ISIJ Int. 48 (2008), pp. 1582–1591.10.2355/isijinternational.48.1582
  • M. Yamaguchi and V. Vitek, Twin boundaries and incoherent steps on twin boundaries in body-centered-cubic metals, Philos. Mag. 34 (1976), pp. 1–11.10.1080/14786437608228170
  • T. Ezaz, M.D. Sangid, and H. Sehitoglu, Energy barriers associated with slip–twin interactions, Philos. Mag. 91 (2011), pp. 1464–1488.10.1080/14786435.2010.541166
  • Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskés, and S.N. Mathaudhu, Dislocation-twin interactions in nanocrystalline fcc metals, Acta Mater. 59 (2011), pp. 812–821.10.1016/j.actamat.2010.10.028
  • M. Mrovec, C. Elsässer, and P. Gumbsch, Interactions between lattice dislocations and twin boundaries in tungsten: A comparative atomistic simulation study, Philos. Mag. 89 (2009), pp. 3179–3194.10.1080/14786430903246346
  • A. Ojha, H. Sehitoglu, L. Patriarca, and H.J. Maier, Twin migration in Fe-based bcc crystals: Theory and experiments, Philos. Mag. 94 (2014), pp. 1816–1840.10.1080/14786435.2014.898123
  • L. Wang, F. Zhao, F.P. Zhao, Y. Cai, Q. An, and S.N. Luo, Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression, J. Appl. Phys. 115 (2014), p. 053528.10.1063/1.4864427
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.10.1006/jcph.1995.1039
  • J. Li, Atom eye: An efficient atomistic configuration viewer, Modell. Simul. Mater. Sci. Eng. 11 (2003), pp. 173–177.10.1088/0965-0393/11/2/305
  • C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B 58 (1998), pp. 11085–11088.10.1103/PhysRevB.58.11085
  • M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta, Development of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag. 83 (2003), pp. 3977–3994.10.1080/14786430310001613264
  • S. Kotrechko and A. Ovsjannikov, Temperature dependence of the yield stress of metallic nano-sized crystals, Philos. Mag. 89 (2009), pp. 3049–3058.10.1080/14786430903179554
  • C.J. Healy and G.J. Ackland, Molecular dynamics simulations of compression–tension asymmetry in plasticity of Fe nanopillars, Acta Mater. 70 (2014), pp. 105–112.10.1016/j.actamat.2014.02.021
  • G. Sainath, B.K. Choudhary, and T. Jayakumar, Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behaviour of body centred cubic iron nanowires, Comput. Mater. Sci. 104 (2015), pp. 76–83.10.1016/j.commatsci.2015.03.053
  • G. Sainath and B.K. Choudhary, Molecular dynamics simulations on size dependent tensile deformation behaviour of [1 1 0] oriented body centred cubic iron nanowires, Mater. Sci. Eng. A 640 (2015), pp. 98–105.10.1016/j.msea.2015.05.084
  • G. Sainath and B.K. Choudhary, Orientation dependent deformation behaviour of BCC iron nanowires, Comput. Mater. Sci. 111 (2016), pp. 406–415.10.1016/j.commatsci.2015.09.055
  • Z. Shi and C.V. Singh, Competing twinning mechanisms in body-centered cubic metallic nanowires, Scr. Mater. 113 (2016), pp. 214–217.10.1016/j.scriptamat.2015.11.006
  • J.A. Zimmerman, E.B. Webb, J.J. Hoyt, R.E. Jones, P.A. Klein, and D.J. Bammann, Calculation of stress in atomistic simulation, Modell. Simul. Mater. Sci. Eng. 12 (2003), pp. S319–S332.
  • A. Stukowski and K. Albe, Dislocation detection algorithm for atomistic simulations, Modell. Simul. Mater. Sci. Eng. 18 (2010), p. 025016.10.1088/0965-0393/18/2/025016
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18 (2009), p. 015012.
  • H.W. Paxton, Experimental verification of the twin system in alpha-iron, Acta Metall. 1 (1953), pp. 141–143.10.1016/0001-6160(53)90052-2
  • S. Mahajan, Accommodation at deformation twins in bcc crystals, Metall. Trans. A 12 (1981), pp. 379–386.10.1007/BF02648535
  • Y. Zhu, Z. Li, M. Huang, and Y. Liu, Strengthening mechanisms of the nanolayered polycrystalline metallic multilayers assisted by twins, Int. J. Plast. 72 (2015), pp. 168–184.10.1016/j.ijplas.2015.05.014
  • I. Salehinia and D. Bahr, Crystal orientation effect on dislocation nucleation and multiplication in FCC single crystal under uniaxial loading, Int. J. Plast. 52 (2014), pp. 133–146.10.1016/j.ijplas.2013.04.010
  • Z. You, X. Li, L. Gui, Q. Lu, T. Zhu, H. Gao, and L. Lu, Plastic anisotropy and associated deformation mechanisms in nanotwinned metals, Acta Mater. 61 (2013), pp. 217–227.10.1016/j.actamat.2012.09.052
  • S. Tsurekawa, T. Tanaka, and H. Yoshinaga, Grain boundary structure, energy and strength in molybdenum, Mater. Sci. Eng. A 176 (1994), pp. 341–348.10.1016/0921-5093(94)90997-0
  • T. Vystavél, J.M. Pénisson, and A. Gemperle, High-resolution and conventional electron microscopy study of a Σ = 3, [1 0 1]{1 2 1} twin grain boundary in molybdenum, Philos. Mag. A 81 (2001), pp. 417–429.10.1080/01418610108214312
  • K. Marukawa, A study of the atomic structure of twin boundaries in body-centred cubic crystals by electron microscopy, Philos. Mag. 36 (1977), pp. 1375–1383.10.1080/14786437708238523
  • C.T. Forwood and L.M. Clarebrough, Rigid body displacements at a faceted ∑3 boundary in α-iron, Phys. Status Solidi A 105 (1988), pp. 365–375.10.1002/(ISSN)1521-396X
  • J.Y. Kim, D. Jang, and J.R. Greer, Crystallographic orientation and size dependence of tension-compression asymmetry in molybdenum nano-pillars, Int. J. Plast. 28 (2012), pp. 46–52.10.1016/j.ijplas.2011.05.015
  • J. Wang, Z. Zeng, C.R. Weinberger, Z. Zhang, T. Zhu, and S.X. Mao, In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten, Nat. Mater. 14 (2015), pp. 594–600.10.1038/nmat4228
  • D. Hull, The initiation of slip at the tip of a deformation twin in α-iron, Acta Metall. 9 (1961), pp. 909–912.10.1016/0001-6160(61)90204-8
  • C.N. Reid, A review of mechanical twinning in body centred cubic metals and its relation to brittle fracture, J. Less Common Met. 9 (1965), pp. 105–122.10.1016/0022-5088(65)90088-3
  • L.M. Hale, J.A. Zimmerman, and C.R. Weinberger, Simulations of bcc tantalum screw dislocations: Why classical inter-atomic potentials predict {1 1 2} slip, Comput. Mater. Sci. 90 (2014), pp. 106–115.10.1016/j.commatsci.2014.03.064
  • G. Simonelli, R. Pasianot, and E. Savino, Embedded-atom-method interatomic potentials for bcc-iron, Mater. Res. Soc. Symp. Proc. 291 (1993), pp. 567–572.
  • J. Chaussidon, M. Fivel, and D. Rodney, The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations, Acta Mater. 54 (2006), pp. 3407–3416.10.1016/j.actamat.2006.03.044
  • D. Caillard, Kinetics of dislocations in pure Fe. Part I. In situ straining experiments at room temperature, Acta Mater. 58 (2010), pp. 3493–3503.10.1016/j.actamat.2010.02.023
  • A. Cao, Shape memory effects and pseudoelasticity in bcc metallic nanowires, J. Appl. Phys. 108 (2010), p. 113531.10.1063/1.3506413
  • H. Chamati, N.I. Papanicolaou, Y. Mishin, and D.A. Papaconstantopoulos, Embedded-atom potential for Fe and its application to self-diffusion on Fe(1 0 0), Surf. Sci. 600 (2006), pp. 1793–1803.10.1016/j.susc.2006.02.010
  • S.L. Frederiksen and K.W. Jacobsen, Density functional theory studies of screw dislocation core structures in bcc metals, Philos. Mag. 83 (2003), pp. 365–375.10.1080/0141861021000034568

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.