538
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Nucleation of deformation twins in nanocrystalline fcc alloys

, , &
Pages 3790-3802 | Received 25 May 2016, Accepted 20 Sep 2016, Published online: 05 Oct 2016

References

  • R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17 (2002), pp. 5–8.10.1557/JMR.2002.0002
  • Y.T. Zhu and X. Liao, Nanostructured metals: Retaining ductility, Nat. Mater. 3 (2004), pp. 351–352.10.1038/nmat1141
  • X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, and Y.T. Zhu, Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility, Proc. Nat. Acad. Sci. 112 (2015), pp. 14501–14505.10.1073/pnas.1517193112
  • Y.T. Zhu, X.Z. Liao, and X.L. Wu, Deformation twinning in nanocrystalline materials, Prog. Mater Sci. 57 (2012), pp. 1–62.10.1016/j.pmatsci.2011.05.001
  • Y. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y.T. Zhu, Y. Zhou, and E.J. Lavernia, High tensile ductility and strength in bulk nanostructured nickel, Adv. Mater. 20 (2008), pp. 3028–3033.10.1002/adma.v20:16
  • Y.-H. Zhao, J.F. Bingert, X.-Z. Liao, B.-Z. Cui, K. Han, and A.V. Sergueeva, Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper, Adv. Mater. 18 (2006), pp. 2949–2953.10.1002/(ISSN)1521-4095
  • Y.Z. Tian, L.J. Zhao, S. Chen, A. Shibata, Z.F. Zhang, and N. Tsuji, Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes, Sci. Rep. 5 (2015), p. 16707.10.1038/srep16707
  • L. Lu, Ultrahigh strength and high electrical conductivity in copper, Science 304 (2004), pp. 422–426.10.1126/science.1092905
  • X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth, Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films, Appl. Phys. Lett. 84 (2004), pp. 1096–1098.10.1063/1.1647690
  • L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science 323 (2009), pp. 607–610.10.1126/science.1167641
  • L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh, Nano-sized twins induce high rate sensitivity of flow stress in pure copper, Acta Mater. 53 (2005), pp. 2169–2179.10.1016/j.actamat.2005.01.031
  • R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Fundamentals of superior properties in bulk nanoSPD materials, Mater. Res. Lett. 4 (2016), pp. 1–21.10.1080/21663831.2015.1060543
  • J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, and J.P. Hirth, Detwinning mechanisms for growth twins in face-centered cubic metals, Acta Mater. 58 (2010), pp. 2262–2270.10.1016/j.actamat.2009.12.013
  • E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu, and K. Lu, Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper, Appl. Phys. Lett. 85 (2004), pp. 4932–4934.10.1063/1.1814431
  • Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys, Adv. Mater. 18 (2006), pp. 2280–2283.10.1002/(ISSN)1521-4095
  • M. Dao, L. Lu, Y.F. Shen, and S. Suresh, Strength, strain-rate sensitivity and ductility of copper with nanoscale twins, Acta Mater. 54 (2006), pp. 5421–5432.10.1016/j.actamat.2006.06.062
  • A. Ookawa, On the mechanism of deformation twin in fcc crystal, J. Phys. Soc. Jpn. 12 (1957), pp. 825–825.10.1143/JPSJ.12.825
  • J.A. Venables, Deformation twinning in face-centred cubic metals, Phil. Mag. 6 (1961), pp. 379–396.10.1080/14786436108235892
  • M. Niewczas and G. Saada, Twinning nucleation in Cu-8 at. % Al single crystals, Philos. Mag. A 82 (2002), pp. 167–191.
  • S. Mahajan and G.Y. Chin, Formation of deformation twins in f.c.c. crystals, Acta Metall. 21 (1973), pp. 1353–1363.10.1016/0001-6160(73)90085-0
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation, Nat. Mater. 1 (2002), pp. 45–49.10.1038/nmat700
  • Y.T. Zhu, X.Z. Liao, and X.L. Wu, Deformation twinning in bulk nanocrystalline metals: Experimental observations, JOM 60 (2008), pp. 60–64.10.1007/s11837-008-0120-1
  • X.L. Wu, X.Z. Liao, S.G. Srinivasan, F. Zhou, E.J. Lavernia, R.Z. Valiev, and Y.T. Zhu, New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals, Phys. Rev. Lett. 100 (2008), p. 095701.
  • V. Yamakov, Deformation twinning in nanocrystalline Al by molecular-dynamics simulation, Acta Mater. 50 (2002), pp. 5005–5020.10.1016/S1359-6454(02)00318-X
  • Y.T. Zhu, X.Z. Liao, and R.Z. Valiev, Formation mechanism of fivefold deformation twins in nanocrystalline face-centered-cubic metals, Appl. Phys. Lett. 86 (2005), p. 103112.10.1063/1.1879111
  • Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskés, and S.N. Mathaudhu, Dislocation–twin interactions in nanocrystalline fcc metals, Acta Mater. 59 (2011), pp. 812–821.10.1016/j.actamat.2010.10.028
  • Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, F. Zhou, and E.J. Lavernia, Nucleation and growth of deformation twins in nanocrystalline aluminum, Appl. Phys. Lett. 85 (2004), pp. 5049–5051.10.1063/1.1823042
  • Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, and E.J. Lavernia, Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation, J. Appl. Phys. 98 (2005), p. 034319.10.1063/1.2006974
  • X.L. Wu and Y.T. Zhu, Inverse grain-size effect on twinning in nanocrystalline Ni, Phys. Rev. Lett. 101 (2008), p. 025503.
  • X.L. Ma, W.Z. Xu, H. Zhou, J.A. Moering, J. Narayan, and Y.T. Zhu, Alloying effect on grain-size dependent deformation twinning in nanocrystalline Cu–Zn alloys, Phil. Mag. 95 (2015), pp. 301–310.10.1080/14786435.2014.1000418
  • D. Finkenstadt and D.D. Johnson, Solute/defect-mediated pathway for rapid nanoprecipitation in solid solutions: γ surface analysis in fcc Al-Ag, Phys. Rev. B 73 (2006), p. 024101.
  • S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu, Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation, Acta Mater. 55 (2007), pp. 6843–6851.10.1016/j.actamat.2007.08.042
  • W. Li, S. Lu, Q.-M. Hu, S.K. Kwon, B. Johansson, and L. Vitos, Generalized stacking fault energies of alloys, J. Phys.: Condens. Matter 26 (2014), p. 265005.10.1088/0953-8984/26/26/265005
  • S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu, Generalized planar fault energies and twinning in Cu–Al alloys, Appl. Phys. Lett. 89 (2006), p. 191911.10.1063/1.2387133
  • H.V. Swygenhoven, Polycrystalline materials: Grain boundaries and dislocations, Science 296 (2002), pp. 66–67.10.1126/science.1071040
  • M. Chen, Deformation twinning in nanocrystalline aluminum, Science 300 (2003), pp. 1275–1277.10.1126/science.1083727
  • X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov, Deformation twinning in nanocrystalline copper at room temperature and low strain rate, Appl. Phys. Lett. 84 (2004), pp. 592–594.10.1063/1.1644051
  • X.L. Wu and Y.T. Zhu, Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries, Appl. Phys. Lett. 89 (2006), p. 031922.10.1063/1.2227639
  • X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov, Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion, J. Appl. Phys. 96 (2004), pp. 636–640.10.1063/1.1757035
  • X.Z. Liao, J.Y. Huang, Y.T. Zhu, F. Zhou, and E.J. Lavernia, Nanostructures and deformation mechanisms in a cryogenically ball-milled Al–Mg alloy, Phil. Mag. 83 (2003), pp. 3065–3075.10.1080/1478643031000152799
  • J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening, Acta Mater. 49 (2001), pp. 1497–1505.10.1016/S1359-6454(01)00069-6
  • T. Steffens, C. Schwink, A. Korner, and H.P. Karnthaler, Transmission electron microscopy study of the stacking-fault energy and dislocation structure in CuMn alloys, Philos. Mag. A 56 (1987), pp. 161–173.10.1080/01418618708205159
  • V. Gerold and H.P. Karnthaler, On the origin of planar slip in f.c.c. alloys, Acta Metall. 37 (1989), pp. 2177–2183.10.1016/0001-6160(89)90143-0
  • H. Neuhäuser, O. Arkan, and H.H. Potthoff, Dislocation multipoles and estimation of frictional stress in f.c.c. copper alloys, Mater. Sci. Eng. 81 (1986), pp. 201–209.10.1016/0025-5416(86)90263-6
  • J.P. Hirth and J. Lothe, Theory of Dislocations, Krieger Pub., Malabar, FL, 1992.
  • J.R. Davis and ASM International (ed.), Properties and Selection: Nonferrous Alloys and Special-purpose Materials, ASM International, Materials Park, OH, 2000.
  • I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, and A. Misra, Emergence of stable interfaces under extreme plastic deformation, Proc. Nat. Acad. Sci. 111 (2014), pp. 4386–4390.10.1073/pnas.1319436111
  • R.J. McCabe, I.J. Beyerlein, J.S. Carpenter, and N.A. Mara, The critical role of grain orientation and applied stress in nanoscale twinning, Nat. Commun. 5 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.