203
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Investigation on bainite transformation and metastable omega/orthorhombic martensite phases in as-quenched Cu-bearing ferrite steel

, , , , , & show all
Pages 84-94 | Received 18 Jul 2016, Accepted 29 Sep 2016, Published online: 10 Oct 2016

References

  • M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, and Y.W. Chung, Aging characteristics and mechanical properties of 1600MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel, Acta Mater. 73 (2014), pp. 56–74.10.1016/j.actamat.2014.03.051
  • X. Wang, G. Sha, Q. Shen, and W. Liu, Age-hardening effect and formation of nanoscale composite precipitates in a NiAlMnCu-containing steel, Mater. Sci. Eng. A 627 (2015), pp. 340–347.10.1016/j.msea.2015.01.023
  • Q. Liu and S. Zhao, Comparative study on austenite decomposition and Cu precipitation during continuous cooling transformation, Metall. Mater. Trans. A 44 (2013), pp. 163–171.10.1007/s11661-012-1383-2
  • S.H.M. Anijdan, A. Rezaeian, and S. Yue, The effect of chemical composition and austenite conditioning on the transformation behavior of microalloyed steels, Mater. Charact. 63 (2012), pp. 27–38.10.1016/j.matchar.2011.11.003
  • B. Hwang, C.G. Lee, and T. Lee, Correlation of microstructure and mechanical properties of thermomechanically processed low-carbon steels containing boron and copper, Metall. Mater. Trans. A 41 (2010), pp. 85–96.10.1007/s11661-009-0070-4
  • D. Isheim, A.H. Hunter, X.J. Zhang, and D.N. Seidman, Nanoscale analyses of high-nickel concentration martensitic high-strength steels, Metall. Mater. Trans. A 44 (2013), pp. 3046–3059.10.1007/s11661-013-1670-6
  • S.S.G. Banadkouki and D.P. Dunne, Formation of ferritic products during continuous cooling of a Cu-bearing HSLA steel, ISIJ Int. 46 (2006), pp. 759–768.10.2355/isijinternational.46.759
  • H.K.D.H. Bhadeshia and D.V. Edmonds, The mechanism of bainite formation in steels, Acta Metall. 28 (1980), pp. 1265–1273.10.1016/0001-6160(80)90082-6
  • H.I. Aaronson, W.T. Reynolds, and G.R. Purdy, The incomplete transformation phenomenon in steel, Metall. Mater. Trans. A 37 (2006), pp. 1731–1745.10.1007/s11661-006-0116-9
  • G.R. Purdy and M. Hillert, On the nature of the bainite transformation in steels, Acta Metall. 32 (1984), pp. 823–828.10.1016/0001-6160(84)90018-X
  • D.H. Ping and W.T. Geng, A popular metastable omega phase in body-centered cubic steels, Mater. Chem. Phys. 139 (2013), pp. 830–835.10.1016/j.matchemphys.2013.02.040
  • Y. Song, J. Cui, and L. Rong, In situ heating TEM observations of a novel microstructure evolution in a low carbon martensitic stainless steel, Mater. Chem. Phys. 165 (2015), pp. 103–107.10.1016/j.matchemphys.2015.09.001
  • P.J. Felfer, C.R. Killmore, J.G. Williams, K.R. Carpenter, S.P. Ringer, and J.M. Cairney, A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel, Acta Mater. 60 (2012), pp. 5049–5055.10.1016/j.actamat.2012.06.013
  • B. Hwang, C.G. Lee, and T. Lee, Correleation of microstructure and mechanical properties of thermomechanically processed low-carbon steels containing boron and copper, Metall. Mater. Trans. A 41 (2010), pp. 85–96.10.1007/s11661-009-0070-4
  • S.H.M. Anijdan, A. Rezaeian, and S. Yue, The effect of chemical composition and austenite conditioning on the transformation behavior of microalloyed steels, Mater. Charact. 63 (2012), pp. 27–38.10.1016/j.matchar.2011.11.003
  • A. Ghosh, B. Mishra, S. Das, and S. Chatterjee, Structure and properties of a low carbon Cu bearing high strength steel, Mater. Sci. Eng. A 396 (2005), pp. 320–332.10.1016/j.msea.2005.01.050
  • Y. Zheng, R.E.A. Williams, S. Nag, R. Banerjee, H.L. Fraser, and D. Banerjee, The effect of alloy composition on instabilities in the β phase of titanium alloys, Scr. Mater. 116 (2016), pp. 49–52.10.1016/j.scriptamat.2016.01.024
  • H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Mater. 54 (2006), pp. 2419–2429.10.1016/j.actamat.2006.01.019
  • J. Pešička, R. Kužel, A. Dronhofer, and G. Eggeler, The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels, Acta Mater. 51 (2003), pp. 4847–4862.10.1016/S1359-6454(03)00324-0
  • N.H.V. Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S.V.D. Zwaag, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater. 53 (2005), pp. 5439–5447.
  • G. Krauss, Deformation and fracture in martensitic carbon steels tempered at low temperatures, Metall. Mater. Trans. B 32 (2001), pp. 205–221.10.1007/s11663-001-0044-4
  • S. Banumathy, R.K. Mandal, and A.K. Singh, Structure of orthorhombic martensitic phase in binary Ti–Nb alloys, J Appl. Phys. 106 (2009), pp. 093518–093518–6.
  • K.S. Jepson, A.R.G. Brown, and J.A. Gray, Proceedings of first international conference on Titanium, Pergamon Press, London, 1970.
  • L.M. Hsiung and D.H. Lassila, Shock-induced deformation twinning and omega transformation in tantalum and tantalum–tungsten alloys, Acta Mater. 48 (2000), pp. 4851–4865.10.1016/S1359-6454(00)00287-1
  • W. Cheng, Y. Lin, and K. Chen, The formation of ferrite quenching twins in a body-centered cubic Fe–Mn–Al alloy during high-temperature quenching, Scr. Mater. 81 (2014), pp. 36–39.10.1016/j.scriptamat.2014.02.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.