135
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The effect of some transition metal oxides on the physical properties of K0.5Na0.5Nb0.95Ta0.05O3 ceramics

, &
Pages 95-107 | Received 28 Jun 2016, Accepted 04 Oct 2016, Published online: 14 Oct 2016

References

  • F. Rubio-Marcos, A.D. Campo, P. Marchet, and J.F. Fernández, Ferroelectric domain wall motion induced by polarized light, Nat. Commun. 6 (2015). doi:10.1038/ncomms7594.
  • K.F. Wang, J.M. Liu, and Z.F. Ren, Multiferroicity: The coupling between magnetic and polarization orders, Adv. Phys. 58 (2009), pp. 321–448.10.1080/00018730902920554
  • J. Ma, J. Hu, Z. Li, and C.W. Nan, Recent progress in multiferroic magnetoelectric composites: From bulk to thin films, Adv. Mater. 23 (2011), pp. 1062–1087.10.1002/adma.201003636
  • J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film hetero-structures, Science 299 (2003), pp. 1719–1722.10.1126/science.1080615
  • R.E. Cohen, Origin of ferroelectricity in perovskite oxides, Nature 358 (1992), pp. 136–138.10.1038/358136a0
  • T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3, Phys. Rev. B 67 (2003), p. 180401(R).10.1103/PhysRevB.67.180401
  • B. Xu, K.B. Yin, J. Lin, Y.D. Xia, X.G. Wan, J. Yin, X.J. Bai, J. Du, and Z.G. Liu, Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3, Phys. Rev. B 79 (2009), p. 134109.10.1103/PhysRevB.79.134109
  • V.R. Palkar and S.K. Malik, Observation of magnetoelectric behavior at room temperature in Pb(FexTi1−x)O3, Solid State Commun. 134 (2005), pp. 783–786.10.1016/j.ssc.2005.01.032
  • Z. Ren, G. Xu, X. Wei, Y. Liu, X. Hou, P. Du, W. Weng, G. Shen, and G. Han, Room- temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals, Appl. Phys. Lett. 91 (2007), pp. 063103–063106.10.1063/1.2766839
  • S. Puthucheri, P.K. Pandey, N.S. Gajbhiye, A. Gupta, A. Singh, R. Chatterjee, and S.K. Date, Microstructural, electrical, and magnetic properties of acceptor-doped nanostructured lead zirconate titanate, J. Am. Ceram. Soc. 94 (2011), pp. 3941–3947.10.1111/jace.2011.94.issue-11
  • K. Wang, J. Li, and J. Zhou, High normalized strain obtained in Li-modified (K, Na)NbO3 lead-free piezoceramics, Appl. Phys. Express 4 (2011), pp. 061501–061503.10.1143/APEX.4.061501
  • E. Li, H. Kakemoto, S. Wada, and T. Tsurumi, Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics, J. Am. Ceram. Soc. 90 (2007), pp. 1787–1791.10.1111/jace.2007.90.issue-6
  • W. Yang, Z. Zhou, B. Yang, R. Zhang, Z. Wang, H. Chen, and Y. Jiang, Structure and piezoelectric properties of Fe-doped potassium sodium niobate tantalate lead-free ceramics, J. Am. Ceram. Soc. 94 (2011), pp. 2489–2493.10.1111/jace.v94.8
  • R. Zuo, Z. Xu, and L. Li, Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics, J. Phys. Chem. Sol. 69 (2008), pp. 1728–1732.10.1016/j.jpcs.2008.01.003
  • C.-M. Cheng, K.-H. Chen, H.-C. Yang, C.-F. Yang, W.-C. Tzou, M.-C. Kuan, and F.-C. Jong, Dielectric characteristics of the lead-free piezoelectric ceramics K0.50Na0.50Nb0.95Ta0.05O3, Key Eng. Mater. 434–435 (2010), pp. 285–288.10.4028/www.scientific.net/KEM.434-435
  • X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, and X. Wang, Giant piezoelectricity in potassium–sodium niobate lead-free ceramics, J. Am. Chem. Soc. 136 (2014), pp. 2905–2910.10.1021/ja500076h
  • X. Huo, R. Zhang, L. Zheng, S. Zhang, R. Wang, J. Wang, S. Sang, B. Yang, and W. Cao, (K, Na, Li)(Nb, Ta)O3: Mn lead-free single crystal with high piezoelectric properties, J. Am. Ceram. Soc. 98 (2015), pp. 1829–1835.10.1111/jace.2015.98.issue-6
  • F. Rubio-Marcos, P. Ochoa, and J.F. Fernandez, Sintering and properties of lead-free (K, Na, Li)(Nb, Ta, Sb)O3 ceramics, J. Eur. Ceram. Soc. 27 (2007), pp. 4125–4129.10.1016/j.jeurceramsoc.2007.02.110
  • F. Rubio-Marcos, A.D. Campo, R. López-Juárez, J.J. Romeroa, and J.F. Fernández, High spatial resolution structure of (K, Na)NbO3 lead-free ferroelectric domains, J. Mater. Chem. 22 (2012), pp. 9714–9720.10.1039/c2jm30483j
  • J. Wu, D. Xiao, and J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries, Chem. Rev. 115 (2015), pp. 2559–2595.10.1021/cr5006809
  • H. Li, W. Yang, Y. Li, Q. Meng, and Z. Zhou, Room-temperature magnetocapacitance in Fe-doped K0.5Na0.5Nb0.95Ta0.05O3 ceramics, Appl. Phys. Express 5 (2012), p. 101501.10.1143/APEX.5.101501
  • M. Peddigari and P. Dobbidi, Raman, dielectric and variable range hopping nature of Gd2O3-doped K0.5N0.5NbO3 piezoelectric ceramics, AIP Adv. 5 (2015), p. 107129.10.1063/1.4934676
  • H. Li, D. Gong, W. Yang, and Z. Zhou, Microstructure and piezoelectric properties of NaF-doped K0.5Na0.5Nb0.95Ta0.05O3 lead-free ceramics, J. Mater. Sci. 48 (2013), pp. 1396–1400.10.1007/s10853-012-6887-z
  • D. Atencio, R.R.C. Filho, S.J.M. Mills, J.M.V. Coutinho, S.B. Honorato, A.P. Ayala, J. Ellena, and M.B.D. Andrade, Rankamaite from the Urubu pegmatite, Itinga, Minas Gerais, Brazil: Crystal chemistry and Rietveld refinement, Am. Mineral. 96 (2011), pp. 1455–1460.10.2138/am.2011.3594
  • R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A A32 (1976), pp. 751–767.10.1107/S0567739476001551
  • K. Kn′ıˇzek, J. Hejtm′anek, M. Maryˇsko, Z. Jir′ak, and J. Burˇs′ık, Stabilization of the high-spin state of Co3+ in LaCo1−xRhxO, Phys. Rev. B 85 (2012), pp. 134401–134407.10.1103/PhysRevB.85.134401
  • S. Takahashi, Effects of impurity doping in lead zirconate–titanate ceramics, Ferroelectrics 41 (1982), pp. 143–156.10.1080/00150198208210617
  • K.H. Hardtl, Electrical and mechanical losses in ferroelectric ceramics, Ceram. Int. 8 (1982), pp. 121–127.10.1016/0272-8842(82)90001-3
  • K. Okazaki and H. Maiwa, Space charge effects on ferroelectric ceramic particle surfaces, Jpn. J. Appl. Phys. 31 (1992), pp. 3113–3116.10.1143/JJAP.31.3113
  • K.Z. Rushchanskii, S. Kamba, V. Goian, P. Vanˇek, M. Savinov, J. Prokleška, D. Nuzhnyy, K. Knížek, F. Laufek, S. Eckel, S.K. Lamoreaux, A.O. Sushkov, M. Ležai, and N.A. Spaldin, A multiferroic material to search for the permanent electric dipole moment of the electron, Nat. Mater. 9 (2010), p. 649.10.1038/nmat2799
  • R. López, F. González, M.P. Cruz, and M.E. Villafuerte-Castrejon, Piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 ceramics synthesized by spray drying method, Mater. Res. Bull. 46 (2011), pp. 70–74.10.1016/j.materresbull.2010.09.034
  • J. Wang, L. Luo, Y. Huang, W. Li, and F. Wang, Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1−x)K0.5Na0.5NbO3−xLiNbO3 ceramics, Appl. Phys. Lett. 107 (2015), p. 192901.10.1063/1.4935218

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.