361
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Adsorption of alkali and alkaline earth metal atoms and dimers on monolayer germanium carbide

&
Pages 155-167 | Received 10 Aug 2016, Accepted 11 Oct 2016, Published online: 28 Oct 2016

References

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature (London) 438 (2005), pp. 197–200.
  • T.J. Booth, P. Blake, R.R. Nair, D. Jiang, E.W. Hill, U. Bangert, A. Bleloch, M. Gass, K.S. Novoselov, M.I. Katsnelson, and A.K. Geim, Macroscopic graphene membranes and their extraordinary stiffness, Nano Lett. 8 (2008), pp. 2442–2446.
  • K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008), pp. 351–355.
  • A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008), pp. 902–907.
  • S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett. 92 (2008), p. 151911 ( 3p).
  • S. Latil and L. Henrard, Charge carriers in few-layer graphene films, Phys. Rev. Lett. 97 (2006), p. 036803 ( 4p).
  • Y. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438 (2005), pp. 201–204.
  • K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, and A.K. Geim Room-temperature quantum Hall effect in graphene, Science. 315 (2007), p. 1379 ( 1p).
  • R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim Fine structure constant defines visual transparency of graphene, Science. 320 (2008), p. 1308 ( 1p).
  • S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.J. Kim, K.S. Kim,B. Ozyilmaz, J.H. Ahn, B. Hong, and S. Iijima,, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010), pp. 574–578.
  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004), pp. 666–669.
  • H. Masui, S. Nakamura, S.P. DenBaars, and U.K. Mishra, Nonpolar and semipolar iii-nitride light-emitting diodes: Achievements and challenges, IEEE Trans. Electron. Devices 57 (2010), pp. 88–100.
  • Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnol. 7 (2012), pp. 699–712.
  • F.B. Zheng and C.W. Zhang, The electronic and magnetic properties of functionalized silicene: a first-principles study, Nanoscale Res. Lett. 7 (2012), p. 422 ( 5p).
  • C.W. Zhang and S.S. Yan, First-principles study of ferromagnetism in two-dimensional silicene with hydrogenation, J. Phys. Chem. C 116 (2012), pp. 4163–4166.
  • R.W. Zhang, C.W. Zhang, W.X. Ji, S.J. Hu, S.S. Yan, S.S. Li, P. Li, P.J. Wang, and Y.S. Liu, Silicane as an inert substrate of silicene: A promising candidate for FET, J. Phys. Chem. C 118 (2014), pp. 25278–25283.
  • Y.P. Wang, W.X. Ji, C.W. Zhang, P. Li, F. Li, P.J. Wang, S.S. Li, and S.S. Yan, Large-gap quantum spin hall state in functionalized dumbbell stanene, Appl. Phys. Lett. 108 (2016), p. 073104 ( 5p).
  • R.W. Zhang, C.W. Zhang, W.X. Ji, S.S. Li, S.J. Hu, S.S. Yan, P. Li, P.J. Wang, and F. Li, Ethynyl-functionalized stanene film: A promising candidate as large gap quantum spin Hall insulator, New J. Phys. 17 (2015), p. 083036 ( 8p).
  • R.W. Zhang, W.X. Ji, C.W. Zhang, S.S. Li, P. Li, and P.J. Wang, New family of room temperature quantum spin Hall insulators in two-dimensional germanene films, J. Mater. Chem. C. 4 (2016), pp. 2088–2094.
  • S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102 (2009), p. 236804 ( 4p).
  • H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations, Phys. Rev. B. 80 (2009), p. 155453 ( 12 p).
  • Q. Peng, C. Liang, W. Ji, and S. De, A first-principles study of the mechanical properties of g-GeC, Mech. Mater. 64 (2013), pp. 135–141.
  • L. Pan, H.J. Liu, Y.W. Wen, X.J. Tan, H.Y. Lv, J. Shi, and X.F. Tang, First-principles study of monolayer and bilayer honeycomb structures of group-IV elements and their binary compounds, Phys. Lett. A 375 (2011), pp. 614–619.
  • E.C. Anota and G.M. Hernandez, Propiedades electronicas de la hoja de carburo de germanio tipo grafeno, Rev. Mex. Fis. 57 (2011), pp. 30–34.
  • T.-Y. Lu, X.-X. Liao, H.-Q. Wanga, and J.-C. Zheng, Tuning the indirect-direct band gap transition of SiC monolayer in a graphene-like honeycomb structure bya quasiparticle GW study, J. Mater. Chem. 22 (2012), pp. 10062–10068.
  • F. Ersan, A.G. Gökçe, and E. Aktürk, Point defects in hexagonal germanium carbide monolayer: A first-principles calculation, Appl. Surf. Sci. 389 (2016), pp. 1–6.
  • Y. Ma, Y. Dai, M. Guo, C. Niu, L. Yu, and B. Huang, , Magnetic properties of the semifluorinated and semihydrogenated 2D sheets of group-IV and III-V binary compounds, Appl. Surf. Sci. 257 (2011), pp. 7845–7850.
  • Z. Xu, Y. Li, C. Li, and Z. Liu, Tunable electronic and optical behaviors of two-dimensional germanium carbide, Appl. Surf. Sci. 367 (2016), pp. 19–25.
  • L.B. Drissi and F.Z. Ramadan, Excitonic effects in GeC hybrid: Many-body Green’s function calculations, Physica E 74 (2015), pp. 377–381.
  • H. Jin, Y. Dai, and B.-B. Huang, Design of advanced photocatalysis system by adatom decoration in 2d nanosheets of group-IV and IIIV binary compounds, Sci. Rep. 74 (2016), p. 23104 ( 8p).
  • K.T. Chan, J.B. Neaton, and M.L. Cohen, First-principles study of metal adatom adsorption on graphene, Phys. Rev. B. 77 (2008), p. 235430 ( 12p).
  • K.-H. Jin, S.-M. Choi, and S.-H. Jhi, Crossover in the adsorption properties of alkali metals on graphene, Phys. Rev. B. 82 (2010), p. 033414 ( 4p).
  • X. Lin and J. Ni, Much stronger binding of metal adatoms to silicene than to graphene: A first-principles study, Phys. Rev. B. 86 (2012), p. 075440 ( 9p).
  • H. Sahin and F.M. Peeters, Adsorption of alkali, alkaline earth, and 3d transition metal atoms on silicene, Phys. Rev. B. 87 (2013), p. 085423 ( 9p).
  • Q. Pang, C.-L. Zhang, L. Li, Z.-Q. Fu, X.-M. Wei, and Y.-L. Song, Adsorption of alkali metal atoms on germanene: A first-principles study, Appl. Surf. Sci. 314 (2014), pp. 15–20.
  • Y. Kadioglu, F. Ersan, G. Gökoğlu, O.Ü. Aktürk, and E. Aktürk, Adsorption of alkali and alkaline-earth metal atoms on stanene: A first-principles study, Mater. Chem. Phys. 180 (2016), pp. 326–331.
  • S.-S. Li, C.-W. Zhang, W.-X. Ji, F. Li, P.-J. Wang, S.-J. Hu, S.-S. Yan, and Y.-S. Liu, Tunable electronic and magnetic properties in germanene by alkali, alkaline earth, group-III and 3d transition metal atoms adsorption, Phys. Chem. Chem. Phys. 16 (2014), pp. 15968–15978.
  • M. Ye, R. Quhe, J. Zheng, Z. Ni, Y. Wang, Y. Yuan, G. Tse, J. Shi, Z. Gao, and J. Lu, Tunable band gap in germanene by surface adsorption, Phys. E: Low-dimensional Syst. Nanostruct. 59 (2014), pp. 60–65.
  • J.-H. Hao, Z.-J. Wang, Y.-F. Wang, R. Yin, and Q.-H. Jiang, Adsorption of alkali, alkaline earth metal atoms on the reconstructed graphene-like BN single sheet, Solid State Sci. 50 (2015), pp. 69–73.
  • X.D. Li, Y.M. Fang, S.Q. Wu, and Z.Z. Zhu, Adsorption of alkali, alkaline earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2, AIP Adv. 5 (2015), p. 057143 ( 9p).
  • A.G. Gokce and E. Akturk, A first-principles study of n-type and p-type doping of germanium carbide sheet, Appl. Surf. Sci. 332 (2015), pp. 147–151.
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B. 50 (1994), p. 17953. ( 27p).
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, C. Car, D. Cavazzoni, G.L. Ceresoli, M. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, G. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys: Condens. Matter. 21 (2009), p. 395502 ( 19p).
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), p. 3865 ( 4p).
  • H.J. Monkhorst and J.D. Pack, On special points for brillouin zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.
  • C.G. Broyden, The convergence of a class of double-rank minimization algorithms 1. General considerations, J. Inst Math. Appl. 6 (1970), pp. 76–90.
  • A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125(22) (2006), p. 224106 (5p).
  • C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B 58 (1998), p. 3641 (22p).
  • A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108 (2015), pp. 1–5.
  • W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter. 21 (2009), p. 084204 ( 7p).
  • K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011), pp. 1272–1276.
  • K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, Van Nostrand Reinhold Company, New York, IV. Constants of Diatomic Molecules, 1979, pp. 354–432.
  • C. Ataca, E. Akturk, S. Ciraci, and H. Ustunel, High-capacity storage by metallized graphene, Appl. Phys. Lett. 93 (2008), p. 043123 ( 3p).
  • Computational Chemistry Comparison and Benchmark DataBase Release 17b, Standard Reference Database, September, 2015. Data Available at http://cccbdb.nist.gov/expgeom1x.asp.
  • G. Kaur, S. Gupta, P. Rani, and K. Dharamvir, Theoretical investigation of structures and energetics of sodium adatom and its dimer on graphene: DFT study, Physica E 74 (2015), pp. 87–92.
  • O.I. Malyi, K. Sopiha, V.V. Kulish, T.L. Tan, S. Manzhos, and C. Persson, A computational study of Na behavior on graphene, Appl. Surf. Sci. 333 (2015), pp. 235–243.
  • G. Kaur, S. Gupta, and K. Dharamvir, Structures and energetics of lithium adatom and its dimer on graphenea DFT study Appl, Surf. Sci. 334 (2015), pp. 19–23.
  • X. He, Z.X. Chen, Z. Li, and Z. Zou, Communication: Emergence of localized magnetic moment at adsorbed beryllium dimer on graphene, J. Chem. Phys. 133 (2010), p. 231104 (4p).
  • Y. Liu, B. Merinov, and V.A. Goddard, Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals, PNAS 113(14) (2016), pp. 3735–3739.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.