108
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A semi-coherent interface with nanoledges intersecting the free surface of an elastic half-space

, , &
Pages 213-229 | Received 26 May 2016, Accepted 19 Oct 2016, Published online: 11 Nov 2016

References

  • M.J. Mills, Simulation of thin-foil effects on high-resolution TEM images of dislocation cores in metals, in TMS Annual Meeting on Computer Simulation of Electron Microscope Diffraction and Images, Krakow and M.O. Keefe, eds., The Mineral, Metals and Materials Society, Las Vegas, NV, 1989, pp. 239–263.
  • R. Gröger, K.J. Dudeck, P.D. Nellist, V. VItek, P.B. Hirsch, and D.J.H. Cockayne, Effect of Eshelby twist on core structure of screw dislocations in molybdenum: atomic structure and electron microscope image simulations, Philos. Mag. 91 (2011), pp. 2364–2381.10.1080/14786435.2011.562474
  • T. Schulz, T. Remmele, T. Markurt, M. Korytov, and M. Albrecht, Analysis of statistical compositional alloy fluctuations in In GaN from aberration corrected transmission electron microscopy image series, J. Appl. Phys. 112 (2012), pp. 033106-1–033106-9. 10.1063/1.4742015.
  • R. Bonnet and M. Loubradou, HRPACK: a software describing the elastic fields near dislocations and interfaces at atomic scale, Ultramicroscopy 69 (1997), pp. 241–257.
  • P. Bayle, T. Deutsch, B. Gilles, F. Lançon, A. Marty, and J. Thibault, Quantitative analysis of the deformation and chemical profiles of strained multilayers, Ultramicroscopy 56 (1994), pp. 94–107.10.1016/0304-3991(94)90149-X
  • M.D. Robertson, J.E. Currie, J.M. Corbett, and J.B. Webb, Determination of elastic strains in epitaxial layers by HREM, Ultramicroscopy 58 (1995), pp. 175–184.10.1016/0304-3991(94)00200-7
  • M.J. Hÿtch, E. Snoeck, and R. Kilaas, Quantitative measurement of displacement and strain fieldsfrom HREM micrographs, Ultramicroscopy 74 (1998), pp. 131–146.10.1016/S0304-3991(98)00035-7
  • M.J. Hÿtch, J. Putaux, and J.-M. Pénisson, Measurement of the displacement field of dislocations to 0.03Å by electron microscopy, Nature 423 (2003), pp. 270–273.10.1038/nature01638
  • M.J. Hÿtch, J. Putaux, and J. Thibault, Stress and strain around grain-boundary dislocations measured by high-resolution electron microscopy, Philos. Mag. 86 (2006), pp. 4641–4656.10.1080/14786430600743876
  • S. Kret, P. Dluzewski, P. Dluzewski, and J.-Y. Laval, On the measurement of dislocation core distributions in a GaAs/ZnTe/CdTe heterostructure by high-resolution transmission electron microscopy, Philos. Mag. 83 (2003), pp. 231–244.10.1080/0141861021000020095
  • C.L. Johnson, E. Snoeck, M. Ezcurdia, B. Rodríguez-González, I. Pastoriza-Santos, L.M. Liz-Marzán, and M.J. Hÿtch, Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles, Nat. Mater. 7 (2008), pp. 120–124.10.1038/nmat2083
  • M. Couillard, G. Radtke, and G.A. Botton, Strain fields around dislocation arrays in a Σ9 silicon bicrystal measured by scanning transmission electron microscopy, Philos. Mag. 93 (2013), pp. 1250–1267.10.1080/14786435.2013.778428
  • J.L. Rouvière, A. Mouti, and P. Stadelmann, Measuring strain on HR-STEM images: application to threading dislocations in Al0.8In0.2N, J. Phys: Conf. Ser. 326 (2011), pp. 0120221-1–0120221-4. 10.1088/1742-6596/326/1/012022.
  • S. Hosseini Vajargah, M. Couillard, K. Cui, S. Ghanad Tavakoli, B. Robinson, R. N. Kleiman, J. S. Preston, and G. A. Botton, Strain relief and AlSb buffer layer morphology in GaSb heteroepitaxial films grown on Si as revealed by high-angle annular dark-field scanning transmission electron microscopy, Appl. Phys. Lett. 98 (2011), pp. 082113-1–082113-3. 10.1063/1.3551626.
  • H. Hojo, E. Tochigi, T. Mizoguchi, H. Ohta, N. Shibata, B. Feng, and Y. Ikuhara, Atomic structure and strain field of threading dislocations in CeO2 thin films on yttria-stabilized ZrO2, Appl. Phys. Lett. 98 (2011), pp. 153104-1–153104-3. 10.1063/1.3575566.
  • Y. Nohara, E. Tochigi, N. Shibata, T. Yamamoto, and Y. Ikuhara, Dislocation structures and strain fields in [111] low-angle tilt grain boundaries in zirconia bicrystals, J. Electron Microsc. 59 (2010), pp. S117–S121.10.1093/jmicro/dfq038
  • J.D. Eshelby and A.N. Stroh, CXL. Dislocations in thin plates, Philos. Mag. 42 (1951), pp. 1401–1405.10.1080/14786445108560958
  • R. Bonnet, M. Loubradou, and J.-M. Pénisson, Burgers vector content of an interfacial ledge, Phys. Rev. Lett. 69 (1992), pp. 104–107.10.1103/PhysRevLett.69.104
  • R. Bonnet, M. Loubradou, and U. Dahmen, Atomic scale observation of the displacement fields generated by the intrinsic defects of{111}Ni3AI/(0 1 0)Ni3Nb close-packed interfaces, Philos. Mag. A 80 (2000), pp. 2233–2256.10.1080/01418610008216471
  • S. Lay and M. Loubradou, Characteristics and origin of clusters in submicron WC–Co cermets, Philos. Mag. 83 (2003), pp. 2669–2679.10.1080/1478643031000136094
  • E.H. Yoffe, The angular dislocation, Philos. Mag. 5 (1960), pp. 161–175.10.1080/14786436008243299
  • E.H. Yoffe, A dislocation at a free surface, Philos. Mag. 6 (1961), pp. 1147–1155.10.1080/14786436108239675
  • S.J. Shaibani and P.M. Hazzledine, The displacement and stress fields of a general dislocation close to a free surface of an isotropic solid, Philos. Mag. A 44 (1981), pp. 657–665.10.1080/01418618108236168
  • R.C. Pond, Review of the principal contrast effects observed at interphase boundaries using transmission electron microscopy, J. Microsc. 135 (1984), pp. 213–240.10.1111/jmi.1984.135.issue-3
  • J.M. Howe, R.C. Pond, and J.P. Hirth, The role of disconnections in phase transformations, Prog. Mater. Sci. 54 (2009), pp. 792–838.10.1016/j.pmatsci.2009.04.001
  • J.P. Hirth, R.C. Pond, and J. Lothe, Disconnections in tilt walls, Acta Mater. 54 (2006), pp. 4237–4245.10.1016/j.actamat.2006.05.017
  • C. Somigliana, Sulla teoria delle distorsioni elastiche. Rendiconti della R. Accademia dei Lincei, (a) Nota I, Vol. XXIII (1st sem. 1914) pp.463–472, (b) Vol. XXIV (1st sem. 1915) pp. 655–675.
  • J.D. Eshelby, The continuum theory of lattice defects, Solid Stat. Phys. 3 (1956), pp. 79–144.
  • R. Bonnet, G. Marcon, and A. Ati, On the use of Somigliana dislocations to describe some interfacial defects, Philos. Mag. A 51 (1985), pp. 429–448.10.1080/01418618508237565
  • A. Boussaid, M. Fnaiech, F. Fournel, and R. Bonnet, Zigzag lines in a (001)Si low-angle twist boundary, Philos. Mag. 85 (2005), pp. 1111–1122.10.1080/14786430412331323573
  • J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, NY, 1982, pp. 76, 835.
  • R. Bonnet, Periodic displacement and stress fields near a phase boundary in the isotropic elasticity theory, Philos. Mag. A 43 (1981), pp. 1165–1187.10.1080/01418618108236150
  • W.T. Read, Theory of Dislocations, McGraw-Hill, New York, NY, 1954.
  • R. Bonnet, M. Couillard, S. Dhouibi, and S. Neily, Atomic scale displacement field induced by a near-Σ9 twin boundary in silicon, Phys. Status Solidi B 1 (2016), pp. 1–4.
  • R. Bonnet, On the energy and elastic field of dislocation arrays at the interface of a symmetrical bicrystal in anisotropic elasticity theory, Philos. Mag. A 44 (1981), pp. 625–642.10.1080/01418618108236166
  • A.H. King and D.A. Smith, The effects on grain-boundary processes of the steps in the boundary plane associated with the cores of grain-boundary dislocations, Acta Crystallogr. Sect. A 36 (1980), pp. 335–343.10.1107/S0567739480000782
  • K. Honda, Dislocation walls consisting of double arrays in white tin single crystals, Jpn. J. Appl. Phys. 18 (1979), pp. 215–224.10.1143/JJAP.18.215
  • B.D. Cullity, Elements of X-ray Diffraction, 3rd ed., Addison-Wesley Pub. Cy Inc., Reading, MA, 1967, p. 483.
  • N. Fribourg-Blanc, M. Dupeux, G. Guenin, and R. Bonnet, Détermination par extensométrie et mesures ultrasonores des six constantes elastiques du cristal Al2Cu (π). Discussion: de l'anisotropie, J. Appl. Crystallogr. 12 (1979), pp. 151–155.10.1107/S0021889879012103
  • F.X. Kayser and C. Stassis, The elastic constants of Ni3Al at 0 and 23.5 °C, Phys. Status Solidi (a) 64 (1981), pp. 335–342.10.1002/(ISSN)1521-396X
  • X. Wang, E. Pan, and J.D. Albrecht, Anisotropic elasticity of multilayered crystals deformed by a biperiodic network of misfit dislocations, Phys. Rev. B. 76 (2007), pp. 134112-1–134112-9. 10.1103/PhysRevB.76.134112.
  • H.J. Chu and E. Pan, Elastic fields due to dislocation arrays in anisotropic bimaterials, Int. J. Solids Struct. 51 (2014), pp. 1954–1961. 10.1016/j.ijsolstr.2014.02.001.
  • J. Lothe, V.L. Indenbom, and V.A. Chamrov, Elastic field and self-force of dislocations emerging at the free surfaces of an anisotropic halfspace, Phys. Status Solidi (b) 111 (1982), pp. 671–677.10.1002/(ISSN)1521-3951
  • P.M. Hazzledine, Private communication, (1981).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.