530
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Density functional theory-based cluster expansion to simulate thermal annealing in FeCrW alloys

, , , , , & show all
Pages 299-317 | Received 30 Jul 2016, Accepted 02 Nov 2016, Published online: 24 Nov 2016

References

  • R.L. Klueh and A.T. Nelson, Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater. 371 (2007), pp. 37–52.10.1016/j.jnucmat.2007.05.005
  • O. Anderoglu, T.S. Byun, M. Toloczko, and S.A. Maloy, Mechanical performance of ferritic martensitic steels for high dose applications in advanced nuclear reactors, Metall. Mater. Trans. A 44 (2013), pp. 70–83.10.1007/s11661-012-1565-y
  • F. Abe, T.-U. Kern, and R. Viswanathan (eds.), Creep-Resistant Steels, CRC Press, New York, NY, 2008.
  • S. Jitsukawa, A. Kimura, A. Kohyama, R.L. Klueh, A.A. Tavassoli, B. van der Schaaf, G.R. Odette, J.W. Rensman, M. Victoria, and C. Petersen, Recent results of the reduced activation ferritic/martensitic steel development, J. Nucl. Mater. 329–333 (2004), pp. 39–46.10.1016/j.jnucmat.2004.04.319
  • J. Vanaja, K. Laha, M. Nandagopal, S. Sam, M.D. Mathew, T. Jayakumar, and E. Rajendra, Kumar, Effect of tungsten on tensile properties and flow behaviour of RAFM steel, J. Nucl. Mater. 433 (2013), pp. 412–418.10.1016/j.jnucmat.2012.10.040
  • K. Ono, M. Miyamoto, K. Arakawa, S.-I. Matsumoto, and F. Kudo, Effects of precipitated helium, deuterium or alloy elements on glissile motion of dislocation loops in Fe–9Cr–2W ferritic alloy, J. Nucl. Mater. 455 (2014), pp. 162–166.10.1016/j.jnucmat.2014.05.022
  • S.S. Huang, T. Yoshiie, Q. Xu, K. Sato, and T.D. Troev, Positron annihilation studies of electron-irradiated F82H model alloys, J. Nucl. Mater. 440 (2013), pp. 617–621.10.1016/j.jnucmat.2013.05.015
  • K. Ono, H. Sasagawa, F. Kudo, M. Miyamoto, and Y. Hidaka, Effects of tungsten on thermal desorption of helium from Fe–9Cr–2W ferritic alloy irradiated with low energy helium ions, J. Nucl. Mater. 417 (2011), pp. 1026–1029.10.1016/j.jnucmat.2011.01.090
  • G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev, On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe–Cr–W model alloy, J. Phys. Condens. Matter 25 (2013), p. 315401.10.1088/0953-8984/25/31/315401
  • A. Bakaev, D. Terentyev, X. He, E.E. Zhurkin, and D. Van Neck, Interaction of carbon–vacancy complex with minor alloying elements of ferritic steels, J. Nucl. Mater. 451 (2014), pp. 82–87.10.1016/j.jnucmat.2014.03.031
  • A. Bakaev, D. Terentyev, G. Bonny, T.P.C. Klaver, P. Olsson, and D. Van Neck, Interaction of minor alloying elements of high-Cr ferritic steels with lattice defects: An ab initio study, J. Nucl. Mater. 444 (2014), pp. 237–246.10.1016/j.jnucmat.2013.09.053
  • P. Olsson, T.P.C. Klaver, and C. Domain, Ab initio study of solute transition–metal interactions with point defects in bcc Fe, Phys. Rev. B 81 (2010), p. 054102.10.1103/PhysRevB.81.054102
  • G. Bonny, D. Terentyev, and L. Malerba, The hardening of iron–chromium alloys under thermal ageing: An atomistic study, J. Nucl. Mater. 385 (2009), pp. 278–283.10.1016/j.jnucmat.2008.12.002
  • D. Terentyev, X. He, G. Bonny, A. Bakaev, E. Zhurkin, and L. Malerba, Hardening due to dislocation loop damage in RPV model alloys: Role of Mn segregation, J. Nucl. Mater. 457 (2015), pp. 173–181.10.1016/j.jnucmat.2014.11.023
  • N. Castin and L. Malerba, Calculation of proper energy barriers for atomistic kinetic Monte Carlo simulations on rigid lattice with chemical and strain field long-range effects using artificial neural networks, J. Chem. Phys. 132 (2010), p. 074507.10.1063/1.3298990
  • N. Castin, M.I. Pascuet, and L. Malerba, Modeling the first stages of Cu precipitation in α-Fe using a hybrid atomistic kinetic Monte Carlo approach, J. Chem. Phys. 135 (2011), p. 064502.10.1063/1.3622045
  • G. Bonny, R.C. Pasianot, and L. Malerba, Interatomic potentials for alloys: Fitting concentration dependent properties, Philos. Mag. 89 (2009), pp. 711–725.10.1080/14786430902720994
  • G. Bonny, R.C. Pasianot, and L. Malerba, Fitting interatomic potentials consistent with thermodynamics: Fe, Cu, Ni and their alloys, Philos. Mag. 89 (2009), pp. 3451–3464.10.1080/14786430903299337
  • MYu Lavrentiev, R. Drautz, D. Nguyen-Manh, T.P.C. Klaver, and S.L. Dudarev, Monte Carlo study of thermodynamic properties and clustering in the bcc Fe–Cr system, Phys. Rev. B 75 (2007), p. 014208.10.1103/PhysRevB.75.014208
  • G. Bonny, D. Terentyev, and L. Malerba, Early stages of α−α′ phase separation in Fe–Cr alloys: An atomistic study, Phys. Rev. B 79 (2009), p. 104207.10.1103/PhysRevB.79.104207
  • D. Terentyev, G. Bonny, N. Castin, C. Domain, L. Malerba, P. Olsson, V. Moloddtsov, and R.C. Pasianot, Further development of large-scale atomistic modelling techniques for Fe–Cr alloys, J. Nucl. Mater. 409 (2011), pp. 167–175.10.1016/j.jnucmat.2010.09.024
  • N. Castin, G. Bonny, D. Terentyev, M. Yu Lavrentiev, and D. Nguyen-Manh, Modelling phase separation in Fe–Cr system using different atomistic kinetic Monte Carlo techniques, J. Nucl. Mater. 417 (2011), pp. 1086–1089.10.1016/j.jnucmat.2010.12.193
  • P. Olsson, J. Wallenius, C. Domain, K. Nordlund, and L. Malerba, Two-band modeling of α-prime phase formation in Fe–Cr, Phys. Rev. B 72 (2005), p. 214119.10.1103/PhysRevB.72.214119
  • A. Caro, D.A. Crowson, and M. Caro, Classical many-body potential for concentrated alloys and the inversion of order in iron–chromium alloys, Phys. Rev. Lett. 95 (2005), p. 75702.10.1103/PhysRevLett.95.075702
  • G. Bonny, R.C. Pasianot, D. Terentyev, and L. Malerba, Iron chromium potential to model high-chromium ferritic alloys, Philos. Mag. 91 (2011), pp. 1724–1746.10.1080/14786435.2010.545780
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993), p. 558.10.1103/PhysRevB.47.558
  • G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), p. 11169.10.1103/PhysRevB.54.11169
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), p. 17953.10.1103/PhysRevB.50.17953
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), p. 1758.10.1103/PhysRevB.59.1758
  • J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992), p. 6671.10.1103/PhysRevB.46.6671
  • S.H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), pp. 1200–1211.10.1139/p80-159
  • B.L. Györffy, Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys, Phys. Rev. B 5 (1972), p. 2382.10.1103/PhysRevB.5.2382
  • L. Vitos, I.A. Abrikosov, and B. Johansson, Anisotropic lattice distortions in random alloys from first-principles theory, Phys. Rev. Lett. 87 (2001), p. 156401.10.1103/PhysRevLett.87.156401
  • O.K. Andersen and T. Saha-Dasgupta, Muffin-tin orbitals of arbitrary order, Phys. Rev. B 62 (2000), p. R16219.10.1103/PhysRevB.62.R16219
  • L. Vitos, Total-energy method based on the exact muffin-tin orbitals theory, Phys. Rev. B 64 (2001), p. 014107.10.1103/PhysRevB.64.014107
  • L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Springer-Verlag, London, 2007.
  • P. Olsson, I.A. Abrikosov, L. Vitos, and J. Wallenius, Ab initio formation energies of Fe–Cr alloys, J. Nucl. Mater. 321 (2003), pp. 84–90.10.1016/S0022-3115(03)00207-1
  • P. Olsson, I.A. Abrikosov, and J. Wallenius, Electronic origin of the anomalous stability of Fe-rich bcc Fe–Cr alloys, Phys. Rev. B 73 (2006), p. 104416.10.1103/PhysRevB.73.104416
  • G. Inden, Atomic ordering, in Materials Science and Technology, in Phase Transformations in Materials, G. Kostorz, ed., Wiley, Weinheim, 2001, pp. 519–581.
  • J.M. Sanchez, F. Ducastelle, and D. Gratias, Generalized cluster description of multicomponent systems, Phys. A 128 (1984), pp. 334–350.10.1016/0378-4371(84)90096-7
  • F. Ducastelle, Cohesion and Structure, in Order and Phase Stability in Alloys, Vol. 3, North-Holland, Amsterdam, 1991.
  • C. Wolverton and D. de Fontaine, Cluster expansions of alloy energetics in ternary intermetallics, Phys. Rev. B 49 (1994), p. 8627.10.1103/PhysRevB.49.8627
  • E. Vincent, C.S. Becquart, and C. Domain, Microstructural evolution under high flux irradiation of dilute Fe–CuNiMnSi alloys studied by an atomic kinetic Monte Carlo model accounting for both vacancies and self interstitials, J. Nucl. Mater. 382 (2008), pp. 154–159.10.1016/j.jnucmat.2008.08.019
  • Y. Le Bouar and F. Soisson, Kinetic pathways from embedded-atom-method potentials: Influence of the activation barriers, Phys. Rev. B 65 (2002), p. 094103.10.1103/PhysRevB.65.094103
  • N. Castin, R.P. Domingos, and L. Malerba, Use of computational intelligence for the prediction of vacancy migration energies in atomistic kinetic monte carlo simulations, Int. J. Comput. Int. Sys. 1 (2008), pp. 340–352.10.1080/18756891.2008.9727630
  • H.C. Kang and W.H. Weinberg, Dynamic Monte Carlo with a proper energy barrier: Surface diffusion and two-dimensional domain ordering, J. Chem. Phys. 90 (1989), pp. 2824–2830.10.1063/1.455932
  • L. Messina, M. Nastar, T. Garnier, C. Domain, and P. Olsson, Exact ab initio transport coefficients in bcc Fe−X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys, Phys. Rev. B 90 (2014), p. 104203.10.1103/PhysRevB.90.104203
  • G. Bonny, D. Terentyev, and L. Malerba, Identification and characterization of Cr-rich precipitates in FeCr alloys: An atomistic study, Comp. Mater. Sci. 42 (2008), pp. 107–112.10.1016/j.commatsci.2007.06.017
  • T.P.C. Klaver, R. Drautz, and M.W. Finnis, Magnetism and thermodynamics of defect-free Fe–Cr alloys, Phys. Rev. B 74 (2006), p. 094435.10.1103/PhysRevB.74.094435
  • G. Bonny, R.C. Pasianot, L. Malerba, A. Caro, P. Olsson, and M.Yu. Lavrentiev, Numerical prediction of thermodynamic properties of iron–chromium alloys using semi-empirical cohesive models: The state of the art, J. Nucl. Mater. 385 (2009), pp. 268–277.10.1016/j.jnucmat.2008.12.001
  • A. van de Walle, M. Asta, and G. Ceder, The alloy theoretic automated toolkit: A user guide, CALPHAD 26 (2002), pp. 539–553.10.1016/S0364-5916(02)80006-2
  • A. van de Walle, Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the alloy theoretic automated toolkit, CALPHAD 33 (2009), pp. 266–278.10.1016/j.calphad.2008.12.005
  • J.S. Wróbel, D. Nguyen-Manh, MYu Lavrentiev, M. Muzyk, and S.L. Dudarev, Phase stability of ternary fcc and bcc Fe–Cr–Ni alloys, Phys. Rev. B 91 (2015), p. 024108.10.1103/PhysRevB.91.024108
  • G. Bonny, D. Terentyev, and L. Malerba, On the α–α′ miscibility gap of Fe–Cr alloys, Scr. Mater. 59 (2008), pp. 1193–1196.10.1016/j.scriptamat.2008.08.008
  • G. Bonny, D. Terentyev, and L. Malerba, New contribution to the thermodynamics of Fe–Cr alloys as base for ferritic steels, J. Phase Equi. Diff. 31 (2010), pp. 439–444.10.1007/s11669-010-9782-9
  • L. Ventelon, F. Willaime, C.-C. Fu, M. Heran, and I. Ginoux, Ab initio investigation of radiation defects in tungsten: Structure of self-interstitials and specificity of di-vacancies compared to other bcc, J. Nucl. Mater. 425 (2012), pp. 16–21.10.1016/j.jnucmat.2011.08.024
  • C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, New York, NY, 1996.
  • C. Domain and C.S. Becquart, Ab initio calculations of defects in Fe and dilute Fe–Cu alloys, Phys. Rev. B 65 (2001), p. 024103.10.1103/PhysRevB.65.024103
  • C.S. Becquart and C. Domain, Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation, Nucl. Instr. Meth. Phys. Res. B 202 (2003), pp. 44–50.10.1016/S0168-583X(02)01828-1
  • P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev, Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals, Phys. Rev. B 76 (2007), p. 054107.10.1103/PhysRevB.76.054107
  • L. Malerba, M.C. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, and C.S. Becquart, Comparison of empirical interatomic potentials for iron applied to radiation damage studies, J. Nucl. Mater. 406 (2010), pp. 19–38.10.1016/j.jnucmat.2010.05.017
  • C.S. Becquart and C. Domain, Ab initio calculations about intrinsic point defects and He in W, Nucl. Instrum. Methods Phys. Res. B 255 (2007), pp. 23–26.10.1016/j.nimb.2006.11.006
  • D. Kato, H. Iwakiri, and K. Morishita, Formation of vacancy clusters in tungsten crystals under hydrogen-rich condition, J. Nucl. Mater. 417 (2011), pp. 1115–1118.10.1016/j.jnucmat.2010.12.211
  • M. Muzyk, D. Nguyen-Manh, K.J. Kurzydłowski, N.L. Baluc, and S.L. Dudarev, Phase stability, point defects, and elastic properties of W–V and W–Ta alloys, Phys. Rev. B 84 (2011), p. 104115.10.1103/PhysRevB.84.104115
  • G. Bonny, D. Terentyev, A. Bakaev, P. Grigorev, and D. Van Neck, Many-body central force potentials for tungsten, Modell. Simul. Mater. Sci. Eng. 22 (2014), p. 053001.10.1088/0965-0393/22/5/053001
  • C.S. Becquart, C. Domain, U. Sarkar, A. De Backer, and M. Hou, Microstructural evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model, J. Nucl. Mater. 403 (2010), pp. 75–88.10.1016/j.jnucmat.2010.06.003
  • F. Bley, Neutron small-angle scattering study of unmixing in Fe–Cr alloys, Acta Metall. Mater. 40 (1992), pp. 1505–1517.10.1016/0956-7151(92)90094-U
  • S. Novy, P. Pareige, and C. Pareige, Atomic scale analysis and phase separation understanding in a thermally aged Fe–20 at.%Cr alloy, J. Nucl. Mater. 384 (2009), pp. 96–102.10.1016/j.jnucmat.2008.10.008
  • D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., CRC, Cheltenham, 1992.10.1007/978-1-4899-3051-4
  • R.A. Wolfe and H.W. Paxton, Diffusion in Bcc metals, Trans. Metall. Soc. AIME 230 (1964), pp. 1426–1432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.