217
Views
32
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of passivation on higher order gradient plasticity models for non-proportional loading: energetic and dissipative gradient components

&
Pages 318-345 | Received 27 Jun 2016, Accepted 04 Nov 2016, Published online: 28 Nov 2016

References

  • E.C. Aifantis, On the microstructural origin of certain inelastic models, J. Eng. Mater-T. ASME 106 (1984), pp. 326–330.10.1115/1.3225725
  • E.C. Aifantis, The physics of plastic deformation, Int. J. Plasticity 3 (1987), pp. 211–247.10.1016/0749-6419(87)90021-0
  • H.B. Mühlhaus and E.C. Alfantis, A variational principle for gradient plasticity, Int. J. Solids. Struct. 28 (1991), pp. 845–857.10.1016/0020-7683(91)90004-Y
  • N.A. Fleck, J.W. Hutchinson, and J.R. Willis, Strain gradient plasticity under non-proportional loading, Proc. Royal Soc. London A–Math. Phys. Eng. Sci. 470 (2014). doi:10.1098/rspa.2014.0267.
  • N.A. Fleck, J.W. Hutchinson, and J.R. Willis, Guidelines for constructing strain gradient plasticity theories, J. Appl. Mech-T. ASME 82 (2015). doi:10.1115/1.4030323.
  • J.W. Hutchinson, Generalizing J(2) flow theory: Fundamental issues in strain gradient plasticity, Acta Mech. Sin. 28 (2012), pp. 1078–1086.10.1007/s10409-012-0089-4
  • P. Gudmundson, A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids 52 (2004), pp. 1379–1406.10.1016/j.jmps.2003.11.002
  • M.E. Gurtin and L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson and their generalization, J. Mech. Phys. Solids 57 (2009), pp. 405–421.10.1016/j.jmps.2008.12.002
  • N.A. Fleck and J.W. Hutchinson, A reformulation of strain gradient plasticity, J. Mech. Phys. Solids 49 (2001), pp. 2245–2271.10.1016/S0022-5096(01)00049-7
  • M.E. Gurtin and L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations, J. Mech. Phys. Solids 53 (2005), pp. 1624–1649.10.1016/j.jmps.2004.12.008
  • N.A. Fleck and J.R. Willis, Strain gradient plasticity: Energetic or dissipative?, Acta Mech. Sin. 31 (2015), pp. 465–472.10.1007/s10409-015-0468-8
  • D. Faghihi and G.Z. Voyiadjis, Determination of nanoindentation size effects and variable material intrinsic length scale for body-centered cubic metals, Mech. Mater. 44 (2012), pp. 189–211.10.1016/j.mechmat.2011.07.002
  • D. Faghihi and G.Z. Voyiadjis, A thermodynamic consistent model for coupled strain-gradient plasticity with temperature, J. Eng. Mater-T. ASME 136 (2014). doi:10.1115/1.4025508.
  • D. Faghihi, G.Z. Voyiadjis, and T. Park, Coupled thermomechanical modeling of small volume FCC metals, J. Eng. Mater-T. ASME 135 (2013). doi:10.1115/1.4023771.
  • G.Z. Voyiadjis and B. Deliktas, Mechanics of strain gradient plasticity with particular reference to decomposition of the state variables into energetic and dissipative components, Int. J. Eng. Sci. 47 (2009), pp. 1405–1423.10.1016/j.ijengsci.2009.05.013
  • G.Z. Voyiadjis and B. Deliktas, Formulation of strain gradient plasticity with interface energy in a consistent thermodynamic framework, Int. J. Plasticity 25 (2009), pp. 1997–2024.10.1016/j.ijplas.2008.12.014
  • G.Z. Voyiadjis and D. Faghihi, Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales, Int. J. Plasticity 30–31 (2012), pp. 218–247.10.1016/j.ijplas.2011.10.007
  • G.Z. Voyiadjis and D. Faghihi, Gradient plasticity for thermo-mechanical processes in metals with length and time scales, Philos. Mag. 93 (2013), pp. 1013–1053.10.1080/14786435.2012.740576
  • G.Z. Voyiadjis and D. Faghihi, Overview of enhanced continuum theories for thermal and mechanical responses of the microsystems in the fast-transient process, J. Eng. Mater-T. ASME 136 (2014). doi:10.1115/1.4028121.
  • G.Z. Voyiadjis, D. Faghihi, and Y.D. Zhang, A theory for grain boundaries with strain-gradient plasticity, Int. J. Solids Struct. 51 (2014), pp. 1872–1889.10.1016/j.ijsolstr.2014.01.020
  • S. Forest and E.C. Aifantis, Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua, Int. J. Solids Struct. 47 (2010), pp. 3367–3376.10.1016/j.ijsolstr.2010.07.009
  • S. Forest and M. Amestoy, Hypertemperature in thermoelastic solids, C. R. Mecanique 336 (2008), pp. 347–353.10.1016/j.crme.2008.01.007
  • S. Forest and R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua, Acta Mech. 160 (2003), pp. 71–111.10.1007/s00707-002-0975-0
  • M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009.
  • B.D. Coleman and M.E. Gurtin, Thermodynamics with internal state variables, J. Chem. Phys. 47 (1967), pp. 597–613. Available at http://scitation.aip.org/docserver/fulltext/aip/journal/jcp/47/2/1.1711937.pdf?expires=1479506476&id=id&accname=2108376&checksum=18E549FA76363A03D411AFCCB752460B10.1063/1.1711937
  • M.E. Gurtin and B.D. Reddy, Alternative formulations of isotropic hardening for Mises materials, and associated variational inequalities, Contin. Mech. Thermodyn. 21 (2009), pp. 237–250.10.1007/s00161-009-0107-3
  • S. Ramaswamy and N. Aravas, Finite element implementation of gradient plasticity models – Part II: Gradient-dependent evolution equations, Comput. Method Appl. M. 163 (1998), pp. 33–53.10.1016/S0045-7825(98)00027-9
  • M.A. Haque and M.T.A. Saif, Strain gradient effect in nanoscale thin films, Acta Mater. 51 (2003), pp. 3053–3061.10.1016/S1359-6454(03)00116-2
  • Y. Xiang and J.J. Vlassak, Bauschinger and size effects in thin-film plasticity, Acta Mater. 54 (2006), pp. 5449–5460.10.1016/j.actamat.2006.06.059
  • S. Han, T. Kim, H. Lee, and H. Lee, Temperature-dependent behavior of thin film by microtensile testing, in Electronics System-Integration Technology Conference, ESTC 2008, 2nd ed., 2008, pp. 477–480.
  • C. Carstensen, F. Ebobisse, A.T. McBride, B.D. Reddy, and P. Steinmann, Some properties of the dissipative model of strain-gradient plasticity, Cond. Mat. Mater. Sci., Submission (arXiv:1608.01342v1).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.