967
Views
16
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Interaction of dislocation pile-up with a low-angle tilt boundary: a discrete dislocation dynamics study

&
Pages 465-488 | Received 20 Sep 2016, Accepted 21 Nov 2016, Published online: 13 Dec 2016

References

  • E.O. Hall, The deformation and ageing of mild steel: iii discussion of results, Proc. Phys. Soc. London Sect. B 64 (1951), pp. 747–753.10.1088/0370-1301/64/9/303
  • N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953), pp. 25–28.
  • W.M. Baldwin Jr, Yield strength of metals as a function of grain size, Acta Metall. 6 (1958), pp. 139–141.10.1016/0001-6160(58)90136-6
  • Y. Li, A.J. Bushby, and D.J. Dunstan, The Hall–Petch effect as a manifestation of the general size effect, Proc. Royal Soc. A: Math. Phys. Eng. Sci. 472 (2016) issue 2190, Article number 20150890.
  • J.D. Eshelby, F.C. Frank, and F.R.N. Nabarro, The equilibrium of linear arrays of dislocations, Philos. Mag. 42 (1951), pp. 351–364.10.1080/14786445108561060
  • G. Leibfried, Verteilung von Versetzungen im statischen Gleichgewicht [Distribution of displacements in static equilibrium], Zeitschrift für Physik 130 (1951), pp. 214–226.10.1007/BF01337695
  • J.P. Hirth and J. Lothe, Theory of Dislocations, Krieger Publishing Company, Malabar, Florida, 1992.
  • Y.T. Chou, Dislocation pile-ups against a locked dislocation of a different burgers vector, J. Appl. Phys. 38 (1967), pp. 2080–2085.10.1063/1.1709833
  • Y.T. Chou and C.S. Pande, Effect of grain boundary dislocations on the slope of the Hall–Petch relation, Metall. Trans. 3 (1972), pp. 591–593.
  • D. Liu, Y. He, B. Zhang, and L. Shen, A continuum theory of stress gradient plasticity based on the dislocation pile-up model, Acta Mater. 80 (2014), pp. 350–364.10.1016/j.actamat.2014.07.043
  • N. Taheri-Nassaj and H.M. Zbib, On dislocation pileups and stress-gradient dependent plastic flow, Int. J. Plast. 74 (2015), pp. 1–16.10.1016/j.ijplas.2015.06.001
  • J.P. Hirth, R.C. Pond, and J. Lothe, Disconnections in tilt walls, Acta Mater. 54 (2006), pp. 4237–4245.10.1016/j.actamat.2006.05.017
  • K. Schulz, D. Dickel, S. Schmitt, S. Sandfeld, D. Weygand, and P. Gumbsch, Analysis of dislocation pile-ups using a dislocation-based continuum theory, Model. Simul. Mater. Sci. Eng. 22 (2014), p. 025008.10.1088/0965-0393/22/2/025008
  • B. Pan, Y. Shibutani, X. Zhang, and F. Shang, Effect of dislocation pile-up on size-dependent yield strength in finite single-crystal micro-samples, J. Appl. Phys. 118 (2015), p. 014305.10.1063/1.4926376
  • S. Zhang, J. Zhou, L. Wang, H. Liu, and S. Dong, Crack nucleation due to dislocation pile-ups at twin boundary–grain boundary intersections, Mater. Sci. Eng.: A 632 (2015), pp. 78–81.10.1016/j.msea.2015.02.048
  • R. Kumar, F. Székely, and E. Van der Giessen, Modelling dislocation transmission across tilt grain boundaries in 2D, Comput. Mater. Sci. 49 (2010), pp. 46–54.10.1016/j.commatsci.2010.04.018
  • S.S. Quek, Z. Wu, Y.W. Zhang, and D.J. Srolovitz, Polycrystal deformation in a discrete dislocation dynamics framework, Acta Mater. 75 (2014), pp. 92–105.10.1016/j.actamat.2014.04.063
  • S.S. Quek, Z.H. Chooi, Z. Wu, Y.W. Zhang, and D.J. Srolovitz, The inverse Hall–Petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis, J. Mech. Phys. Solids 88 (2016), pp. 252–266.10.1016/j.jmps.2015.12.012
  • R. Kumar, L. Nicola, and E. Van der Giessen, Density of grain boundaries and plasticity size effects: A discrete dislocation dynamics study, Mater. Sci. Eng.: A 527 (2009), pp. 7–15.10.1016/j.msea.2009.08.072
  • L.C. Lim and R. Raj, Continuity of slip screw and mixed crystal dislocations across bicrystals of nickel at 573 K, Acta Metall. 33 (1985), pp. 1577–1583.10.1016/0001-6160(85)90057-4
  • Z. Shen, R.H. Wagoner, and W.A.T. Clark, Dislocation pile-up and grain boundary interactions in 304 stainless steel, Scr. Metall. 20 (1986), pp. 921–926.10.1016/0036-9748(86)90467-9
  • Z. Shen, R.H. Wagoner, and W.A.T. Clark, Dislocation and grain boundary interactions in metals, Acta Metall. 36 (1988), pp. 3231–3242.10.1016/0001-6160(88)90058-2
  • T.C. Lee, I.M. Robertson, and H.K. Birnbaum, An in-situ transmission electron microscope deformation study of the slip transfer mechanisms in metals, Metall. Trans. A 21 (1990), pp. 2437–2447.10.1007/BF02646988
  • J. Gemperlová, A. Jacques, A. Gemperle, T. Vystavel, N. Zárubová, and M. Janecek, In-situ transmission electron microscopy observation of slip propagation in Σ3 bicrystals, Mater. Sci. Eng.: A 324 (2002), pp. 183–189.10.1016/S0921-5093(01)01309-0
  • X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, and Y.T. Zhu, Deformation mechanism in nanocrystalline Al: Partial dislocation slip, Appl. Phys. Lett. 83 (2003), pp. 632–634.10.1063/1.1594836
  • A. Gemperle, J. Gemperlová, and N. Zárubová, Interaction of slip dislocations with grain boundaries in body-centered cubic bicrystals, Mater. Sci. Eng.: A 387–389 (2004), pp. 46–50.10.1016/j.msea.2004.03.081
  • R. Ding, J. Gong, A.J. Wilkinson, and I.P. Jones, A study of dislocation transmission through a grain boundary in hcp Ti–6Al using micro-cantilevers, Acta Mater. 103 (2016), pp. 416–423.10.1016/j.actamat.2015.10.023
  • T.P. Darby, R. Schindler, and R.W. Balluffi, On the interaction of lattice dislocations with grain boundaries, Philos. Mag. A 37 (1978), pp. 245–256.10.1080/01418617808235438
  • K. Kashihara and F. Inoko, Effect of piled-up dislocations on strain induced boundary migration (SIBM) in deformed aluminum bicrystals with originally ∑3 twin boundary, Acta Mater. 49 (2001), pp. 3051–3061.10.1016/S1359-6454(01)00211-7
  • S. Zaefferer, J.C. Kuo, Z. Zhao, M. Winning, and D. Raabe, On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals, Acta Mater. 51 (2003), pp. 4719–4735.10.1016/S1359-6454(03)00259-3
  • P.J. Imrich, C. Kirchlechner, C. Motz, and G. Dehm, Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary, Acta Mater. 73 (2014), pp. 240–250.10.1016/j.actamat.2014.04.022
  • T.R. Bieler, P. Eisenlohr, C. Zhang, H.J. Phukan, and M.A. Crimp, Grain boundaries and interfaces in slip transfer, Curr. Opin. Solid State Mater. Sci. 18 (2014), pp. 212–226.10.1016/j.cossms.2014.05.003
  • Y. Guo, D.M. Collins, E. Tarleton, F. Hofmann, J. Tischler, W. Liu, R. Xu, A.J. Wilkinson, and T.B. Britton, Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D, Acta Mater. 96 (2015), pp. 229–236.10.1016/j.actamat.2015.05.041
  • G.Z. Voyiadjis and C. Zhang, The mechanical behavior during nanoindentation near the grain boundary in a bicrystal FCC metal, Mater. Sci. Eng.: A 621 (2015), pp. 218–228.10.1016/j.msea.2014.10.070
  • C. Zhang and G.Z. Voyiadjis, Rate-dependent size effects and material length scales in nanoindentation near the grain boundary for a bicrystal FCC metal, Mater. Sci. Eng.: A 659 (2016), pp. 55–62.10.1016/j.msea.2016.02.033
  • B.R.S. Rogne and C. Thaulow, Effect of crystal orientation on the strengthening of iron micro pillars, Mater. Sci. Eng.: A 621 (2015), pp. 133–142.10.1016/j.msea.2014.10.067
  • M. Mieszala, G. Guillonneau, M. Hasegawa, R. Raghavan, J.M. Wheeler, S. Mischler, J. Michler, and L. Philippe, Orientation-dependent mechanical behaviour of electrodeposited copper with nanoscale twins, Nanoscale 8 (2016), pp. 15999–16004.10.1039/C6NR05116B
  • J. Kacher, B.P. Eftink, B. Cui, and I.M. Robertson, Dislocation interactions with grain boundaries, Curr. Opin. Solid State Mater. Sci. 18 (2014), pp. 227–243.10.1016/j.cossms.2014.05.004
  • E. Bayerschen, A.T. McBride, B.D. Reddy, and T. Böhlke, Review on slip transmission criteria in experiments and crystal plasticity models, J. Mater. Sci. 51 (2015), pp. 2243–2258.
  • J.P. Hirth, Influence of grain boundaries on mechanical properties, Metall. Trans. 3 (1972), pp. 3047–3067.10.1007/BF02661312
  • M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.M. Robertson, Energy of slip transmission and nucleation at grain boundaries, Acta Mater. 59 (2011), pp. 283–296.10.1016/j.actamat.2010.09.032
  • N. Li, J. Wang, A. Misra, X. Zhang, J.Y. Huang, and J.P. Hirth, Twinning dislocation multiplication at a coherent twin boundary, Acta Mater. 59 (2011), pp. 5989–5996.10.1016/j.actamat.2011.06.007
  • J. Wang, Atomistic simulations of dislocation pileup: Grain boundaries interaction, JOM 67 (2015), pp. 1515–1525.10.1007/s11837-015-1454-0
  • B. Liu, D. Raabe, P. Eisenlohr, F. Roters, A. Arsenlis, and G. Hommes, Dislocation interactions and low-angle grain boundary strengthening, Acta Mater. 59 (2011), pp. 7125–7134.10.1016/j.actamat.2011.07.067
  • B. Liu, P. Eisenlohr, F. Roters, and D. Raabe, Simulation of dislocation penetration through a general low-angle grain boundary, Acta Mater. 60 (2012), pp. 5380–5390.10.1016/j.actamat.2012.05.002
  • N. Verdhan and R. Kapoor, Interaction of dislocations with low angle tilt boundaries in FCC crystals, Comput. Mater. Sci. 98 (2015), pp. 149–157.10.1016/j.commatsci.2014.11.006
  • S.J. Zhou, D.L. Preston, P.S. Lomdahl, and D.M. Beazley, Large-scale molecular dynamics simulations of dislocation intersection in copper, Science 279 (1998), pp. 1525–1527.10.1126/science.279.5356.1525
  • C.C. Wu, P.W. Chung, S. Aubry, L.B. Munday, and A. Arsenlis, The strength of binary junctions in hexagonal close-packed crystals, Acta Mater. 61 (2013), pp. 3422–3431.10.1016/j.actamat.2013.02.033
  • G. Winther, C.S. Hong, and X. Huang, Low-energy dislocation structure (LEDS) character of dislocation boundaries aligned with slip planes in rolled aluminium, Philos. Mag. 95 (2015), pp. 1471–1489.10.1080/14786435.2015.1033488
  • N. Verdhan and R. Kapoor, Comparison of the strength of binary dislocation junctions in fcc crystals, Indian J. Mater. Sci. 2014 (2014), Article ID 715356, 5 pages. doi 10.1155/2014/715356.
  • V. Bulatov and W. Cai, Computer Simulations of Dislocations Vol. 3, OUP, Oxford, 2006.
  • A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov, Enabling strain hardening simulations with dislocation dynamics, Model. Simul. Mater. Sci. Eng. 15 (2007) pp. 553–595.
  • T. Arsenlis, V.V. Bulatov, W. Cai, G. Hommes, M. Rhee, and M. Tang, Documentation of ParaDiS v2.5.1. (2011).
  • M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006), pp. 427–556.10.1016/j.pmatsci.2005.08.003
  • L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science 323 (2009), pp. 607–610.10.1126/science.1167641
  • Y. Tang, E.M. Bringa, and M.A. Meyers, Inverse Hall-Petch relationship in nanocrystalline tantalum, Mater. Sci. Eng.: A 580 (2013), pp. 414–426.10.1016/j.msea.2013.05.024
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nat. Mater. 3 (2004), pp. 43–47.10.1038/nmat1035
  • M.J. Caturla, T.G. Nieh, and J.S. Stolken, Differences in deformation processes in nanocrystalline nickel with low- and high-angle boundaries from atomistic simulations, Appl. Phys. Lett. 84 (2004), pp. 598–600.10.1063/1.1640464
  • A.V. Sergueeva, N.A. Mara, and A.K. Mukherjee, Grain boundary sliding in nanomaterials at elevated temperatures, J. Mater. Sci. 42 (2007), pp. 1433–1438.10.1007/s10853-006-0697-0
  • L. Zhang, C. Lu, and K. Tieu, A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals, Comput. Mater. Sci. 118 (2016), pp. 180–191.10.1016/j.commatsci.2016.03.021
  • D.J. Abson and J.J. Jonas, The Hall–Petch relation and high-temperature subgrains, Met. Sci. J. 4 (1970), pp. 24–28.10.1179/msc.1970.4.1.24
  • N. Hansen, Hall–Petch relation and boundary strengthening, Scr. Mater. 51 (2004), pp. 801–806.10.1016/j.scriptamat.2004.06.002
  • A.T. Lim, M. Haataja, W. Cai, and D.J. Srolovitz, Stress-driven migration of simple low-angle mixed grain boundaries, Acta Mater. 60 (2012), pp. 1395–1407.10.1016/j.actamat.2011.11.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.