397
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Ordinary dislocation configurations in high Nb-containing TiAl alloy deformed at high temperatures

, &
Pages 515-526 | Received 01 Jul 2016, Accepted 26 Nov 2016, Published online: 17 Dec 2016

References

  • F. Appel, Atomic level observations of mechanical damage in shot peened TiAl, Philos. Mag. 93 (2013), pp. 2–21.10.1080/14786435.2012.699688
  • W.J. Zhang, S.C. Deevi, and G.L. Chen, On the origin of superior high strength of Ti–45Al–10Nb alloys, Intermetallics 10 (2002), pp. 403–406.10.1016/S0966-9795(02)00008-0
  • J.E. Butzke and S. Bargmann, Thermomechanical modelling of polysynthetically twinned TiAl crystals, Philos. Mag. 95 (2015), pp. 2607–2626.10.1080/14786435.2015.1070968
  • D. Hu, A.J. Huang, and X. Wu, On the massive phase transformation regime in TiAl alloys: The alloying effect on massive/lamellar competition, Intermetallics 15 (2007), pp. 327–332.10.1016/j.intermet.2006.07.007
  • L. Song, X.J. Xu, C. Peng, Y.L. Wang, Y.F. Liang, S.L. Shang, Z.K. Liu, and J.P. Lin, Deformation behaviour and 6H-LPSO structure formation at nanoindentation in lamellar high Nb containing TiAl alloy, Philos. Mag. Lett. 95 (2015), pp. 85–91.10.1080/09500839.2015.1009515
  • W.J. Zhang, Z.C. Liu, G.L. Chen, and Y.W. Kim, Deformation mechanisms in a high-Nb containing γ–TiAl alloy at 900 °C, Mater. Sci. Eng. A 271 (1999), pp. 416–423.10.1016/S0921-5093(99)00313-5
  • F. Appel, An electron microscope study of mechanical twinning and fracture in TiAl alloys, Philos. Mag. 85 (2005), pp. 205–231.10.1080/14786430412331315662
  • Y. Yuan, K.B. Yin, X.N. Zhao, X.K. Meng, and Z.G. Liu, Dissociation of super-dislocations and the SISF energy in γ–TiAl based alloy with Nb-doping, as studied by HRTEM, J. Mat. Sci. 41 (2006), pp. 4695–4697.10.1007/s10853-006-0350-y
  • J.D.H. Paul, F. Appel, and R. Wanger, The compression behaviour of niobium alloyed γ-titanium alumindies, Acta Mater. 46 (1998), pp. 1075–1085.10.1016/S1359-6454(97)00332-7
  • W.J. Zhang and F. Appel, Effect of Al content and Nb addition on the strength and fault energy of TiAl alloys, Mater. Sci. Eng. A 329–331 (2002), pp. 649–652.10.1016/S0921-5093(01)01663-X
  • W.J. Zhang and F. Appel, Weak-beam TEM study on planar fault energies of Al-lean TiAl-base alloys, Mater. Sci. Eng. A 334 (2002), pp. 59–64.10.1016/S0921-5093(01)01763-4
  • S. Sriram, D.M. Dimiduk, P.M. Hazzledine, and V.K. Vasudevan, The geometry and nature of pinning points of ½ < 1 1 0] unit dislocations in binary TiAl alloys, Philos. Mag. A 76 (1997), pp. 965–993.10.1080/01418619708200010
  • Q. Feng and S.H. Whang, Deformation of Ti-56 At.%Al single crystals oriented for single slip by ½ < 1 1 0] ordinary dislocations, Acta. Mater. 48 (2000), pp. 4307–4321.
  • Q. Feng and S.H. Whang, Cross-slip and glide behavior of ordinary dislocations in single crystal γ–Ti–56Al, Intermetallics 7 (1999), pp. 971–979.10.1016/S0966-9795(99)00005-9
  • Q. Feng, Z.M. Wang, and S.H. Whang, Deformation under single slip of ordinary dislocations in single crystal Ti–56Al, Mater. Sci. Eng. A 239–240 (1997), pp. 55–62.10.1016/S0921-5093(97)00560-1
  • A. Couret, Glide mechanism of ordinary dislocations in the γ phase of TiAl, Intermetallics 9 (2001), pp. 899–906.10.1016/S0966-9795(01)00088-7
  • B. Viguier, K.J. Hemker, J. Bonneville, F. Louchet, and J.L. Martin, Modelling the flow stress anomaly in γ–TiAl I. Experimental observations of dislocation mechanisms, Philos. Mag. A 71 (1995), pp. 1295–1312.
  • F. Louchet and B. Viguier, Modelling the flow stress anomaly in γ–TiAl II. The local pinning-unzipping model: Statistical analysis and consequences, Philos. Mag. A 71 (1995), pp. 1313–1333.
  • A. Couret, An in situ study of ordinary dislocation glide in γ–TiAl alloys, Philos. Mag. Lett. 79 (1999), pp. 1977–1994.10.1080/01418619908210404
  • B.K. Kad and H.L. Fraser, Effects of oxygen on the deformation behaviour in single-phase γ–TiAl alloys, Philos. Mag. Lett. 70 (1994), pp. 211–220.10.1080/09500839408240977
  • L. Song, L.Q. Zhang, X.J. Xu, J. Sun, and J.P. Lin, Omega phase in as-cast high-Nb-containing TiAl alloy, Scr. Mater. 68 (2013), pp. 929–932.10.1016/j.scriptamat.2013.02.035
  • Y.Q. Sun, Anisotropic line tension of ½ < 1 1 0] screw dislocations on cross-slip planes in gamma-TiAl, Philos. Mag. Lett. 79 (1999), pp. 539–544.10.1080/095008399176904
  • P. Veyssiere and F. Gregori, Properties of {1 1 0]{1 1 1} slip in Al-rich γ–TiAl deformed at room temperature III. The role of loop strings in the pinning and the patterning of dislocations, Phil. Mag. A 82 (2002), pp. 579–590.
  • P. Veyssiere and F. Gregori, Properties of {1 1 0](1 1 1} slip in Al-rich γ–TiAl deformed at room temperature II. The formation of strings of prismatic loops, Philos. Mag. A 82 (2002), pp. 567–577.
  • F. Gregori and P. Veyssiere, Properties of <1 1 0]{1 1 1} slip in Al-rich γ–TiAl deformed at room temperature I. Transmission electron microscopy analysis of deformation debris, Philos. Mag. A 82 (2002), pp. 553–566.
  • M.A. Morris, Dislocation mobility, ductility and anomalous strengthening of two-phase TiAl alloys: effects of oxygen and composition, Intermetallics 4 (1996), pp. 417–426.10.1016/0966-9795(95)00060-7
  • L. Song, X.J. Xu, L. You, Y.F. Liang, and J.P. Lin, Phase transformation and decomposition mechanisms of the βo(ω) phase in cast high Nb containing TiAl alloy, J. Alloys Compd. 616 (2014), pp. 483–491.10.1016/j.jallcom.2014.07.130
  • L. Fang, J.P. Lin, and X.F. Ding, Thermal cycling induced microstructural instability in fully lamellar Ti–45Al–8.5Nb-(W, B, Y) alloys, Mater. Chem. Phys. 167 (2015), pp. 112–118.10.1016/j.matchemphys.2015.10.017
  • W.Y. Wang, S.L. Shang, Y. Wang, Y.J. Hu, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, X.D. Hui, and Z.K. Liu, Lattice distortion induced anomalous ferromagnetism and electronic structure in FCC Fe and Fe-TM (TM ¼ Cr, Ni, Ta and Zr) alloys, Mater. Chem. Phys. 162 (2015), pp. 748–756.10.1016/j.matchemphys.2015.06.051

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.