395
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A thermally activated dislocation-based constitutive flow model of nanostructured FCC metals involving microstructural evolution

, , , &
Pages 613-637 | Received 25 Sep 2016, Accepted 10 Dec 2016, Published online: 04 Jan 2017

References

  • K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Deformation of electrodeposited nanocrystalline nickel, Acta Mater. 51 (2003), pp. 387–405.10.1016/S1359-6454(02)00421-4
  • M. Dao, L. Lu, R. Asaro, J.T.M. De Hosson, and E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater. 55 (2007), pp. 4041–4065.10.1016/j.actamat.2007.01.038
  • T. Zhu and J. Li, Ultra-strength materials, Prog. Mater. Sci. 55 (2010), pp. 710–757.10.1016/j.pmatsci.2010.04.001
  • M.A. Tschopp and D.L. McDowell, Structures and energies of Sigma 3 asymmetric tilt grain boundaries in copper and aluminium, Philos. Mag. 87 (2007), pp. 3147–3173.10.1080/14786430701255895
  • J. Wang, N. Li, and A. Misra, Structure and stability of Sigma 3 grain boundaries in face centered cubic metals, Philos. Mag. 93 (2013), pp. 315–327.
  • L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh, Nano-sized twins induce high rate sensitivity of flow stress in pure copper, Acta Mater. 53 (2005), pp. 2169–2179.10.1016/j.actamat.2005.01.031
  • L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science 323 (2009), pp. 607–610.10.1126/science.1167641
  • J. Wang and X. Zhang, Twinning effects on strength and plasticity of metallic materials, MRS Bull. 41 (2016), pp. 274–281.10.1557/mrs.2016.67
  • M. Dao, L. Lu, Y.F. Shen, and S. Suresh, Strength, strain-rate sensitivity and ductility of copper with nanoscale twins, Acta Mater. 54 (2006), pp. 5421–5432.10.1016/j.actamat.2006.06.062
  • F. Sansoz, K. Lu, T. Zhu, and A. Misra, Strengthening and plasticity in nanotwinned metals, MRS Bull. 41 (2016), pp. 292–297.10.1557/mrs.2016.60
  • Z.X. Wu, Y.W. Zhang, and D.J. Srolovitz, Deformation mechanisms, length scales and optimizing the mechanical properties of nanotwinned metals, Acta Mater. 59 (2011), pp. 6890–6900.10.1016/j.actamat.2011.07.038
  • D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker, Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films, Acta Mater. 54 (2006), pp. 2253–2263.10.1016/j.actamat.2006.01.023
  • H. Bahmanpour, K.M. Youssef, J. Horky, D. Setman, M.A. Atwater, M.J. Zehetbauer, R.O. Scattergood, and C.C. Koch, Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy, Acta Mater. 60 (2012), pp. 3340–3349.10.1016/j.actamat.2012.02.036
  • Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee Jr, and A.V. Hamza, Defective twin boundaries in nanotwinned metals, Nat. Mater. 12 (2013), pp. 697–702.10.1038/nmat3646
  • J. Li, J.Y. Zhang, L. Jiang, P. Zhang, K. Wu, G. Liu, and J. Sun, Twinning/detwinning-mediated grain growth and mechanical properties of free-standing nanotwinned Ni foils: Grain size and strain rate effects, Mater. Sci. Eng. A 628 (2015), pp. 62–74.10.1016/j.msea.2015.01.015
  • J.P. Hirth and R.W. Balluffi, On grain boundary dislocations and ledges, Acta Metall. 21 (1973), pp. 929–942.10.1016/0001-6160(73)90150-8
  • L. Capolungo, D.E. Spearot, M. Cherkaoui, D.L. McDowell, J. Qu, and K.I. Jacob, Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation, J. Mech. Phys. Solids 55 (2007), pp. 2300–2327.10.1016/j.jmps.2007.04.001
  • M.A. Tschopp and D.L. McDowell, Grain boundary dislocation sources in nanocrystalline copper, Scripta Mater. 58 (2008), pp. 299–302.10.1016/j.scriptamat.2007.10.010
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nat. Mater. 3 (2004), pp. 43–47.10.1038/nmat1035
  • H. Van Swygenhoven, P. Derlet, and A. Frøseth, Nucleation and propagation of dislocations in nanocrystalline fcc metals, Acta Mater. 54 (2006), pp. 1975–1983.10.1016/j.actamat.2005.12.026
  • R.J. Asaro and S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins, Acta Mater. 53 (2005), pp. 3369–3382.10.1016/j.actamat.2005.03.047
  • Y.T. Zhu, Deformation twinning in nanocrystalline materials, Prog. Mater. Sci. 57 (2012), pp. 1–62.10.1016/j.pmatsci.2011.05.001
  • J. Rajagopalan, C. Rentenberger, H. Peter Karnthaler, G. Dehm, and M.T.A. Saif, In situ TEM study of microplasticity and Bauschinger effect in nanocrystalline metals, Acta Mater. 58 (2010), pp. 4772–4782.10.1016/j.actamat.2010.05.013
  • F. Mompiou, D. Caillard, M. Legros, and H. Mughrabi, In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium, Acta Mater. 60 (2012), pp. 3402–3414.10.1016/j.actamat.2012.02.049
  • J. Schiotz and K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 301 (2003), pp. 1357–1359.10.1126/science.1086636
  • Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao, Grain boundary-mediated plasticity in nanocrystalline nickel, Science 305 (2004), pp. 654–657.10.1126/science.1098741
  • J.-Y. Zhang, G. Liu, R.H. Wang, J. Li, J. Sun, and E. Ma, Double-inverse grain size dependence of deformation twinning in nanocrystalline Cu, Phys. Rev. B 81 (2010), pp. 172104-1–172104-4.
  • J.Y. Zhang, P. Zhang, R.H. Wang, G. Liu, G.J. Zhang, and J. Sun, Grain-size-dependent zero-strain mechanism for twinning in copper, Phys. Rev. B 86 (2012), pp. 064110-1–064110-6.
  • S. Ni, Y.B. Wang, X.Z. Liao, H.Q. Li, R.B. Figueiredo, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals, Phys. Rev. B 84 (2011), pp. 235401-1–235401-4.
  • J.G. Brons, H.A. Padilla, G.B. Thompson, and B.L. Boyce, Cryogenic indentation-induced grain growth in nanotwinned copper, Scr. Mater. 68 (2013), pp. 781–784.10.1016/j.scriptamat.2012.12.026
  • K. Zhang, J.R. Weertman, and J.A. Eastman, Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures, Appl. Phys. Lett. 87 (2005), pp. 061921-1–061921-3.
  • X.M. Luo, X.F. Zhu, and G.P. Zhang, Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading, Nat. Commun. 5 (2014), pp. 3021-1–3021-8.
  • T.J. Rupert, D.S. Gianola, Y. Gan, and K.J. Hemker, Experimental observations of stress-driven grain boundary migration, Science 326 (2009), pp. 1686–1690.10.1126/science.1178226
  • R.A. Meirom, D.H. Alsem, A.L. Romasco, T. Clark, R.G. Polcawich, J.S. Pulskamp, M. Dubey, R.O. Ritchie, and C.L. Muhlstein, Fatigue-induced grain coarsening in nanocrystalline platinum films, Acta Mater. 59 (2011), pp. 1141–1149.10.1016/j.actamat.2010.10.047
  • Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horita, T.G. Langdon, and Y.T. Zhu, The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion, Mater. Sci. Eng. A 527 (2010), pp. 4959–4966.10.1016/j.msea.2010.04.036
  • F. Wu, H.M. Wen, E.J. Lavernia, J. Narayan, and Y.T. Zhu, Twin intersection mechanisms in nanocrystalline fcc metals, Mater. Sci. Eng. A 585 (2013), pp. 292–296.10.1016/j.msea.2013.07.063
  • J. Eckert, J.C. Holzer, C.E. Krill III, and W.L. Johnson, Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition, J. Mater. Res. 7 (1992), pp. 1751–1761.10.1557/JMR.1992.1751
  • Z.X. Wu, Y.W. Zhang, and D.J. Srolovitz, Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals, Acta Mater. 57 (2009), pp. 4508–4518.10.1016/j.actamat.2009.06.015
  • X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature 464 (2010), pp. 877–880.10.1038/nature08929
  • I. Shabib and R.E. Miller, Deformation characteristics and stress–strain response of nanotwinned copper via molecular dynamics simulation, Acta Mater. 57 (2009), pp. 4364–4373.10.1016/j.actamat.2009.05.028
  • S. Cheng, J.A. Spencer, and W.W. Milligan, Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals, Acta Mater. 51 (2003), pp. 4505–4518.10.1016/S1359-6454(03)00286-6
  • Y. Estrin, H.S. Kim, and F.R.N. Nabarro, A comment on the role of Frank–Read sources in plasticity of nanomaterials, Acta Mater. 55 (2007), pp. 6401–6407.10.1016/j.actamat.2007.07.052
  • M. Kato, Thermally activated dislocation depinning at a grain boundary in nanocrystalline and ultrafine-grained materials, Mater. Sci. Eng. A 516 (2009), pp. 276–282.10.1016/j.msea.2009.03.035
  • F.R.N. Nabarro, Cottrell-stokes law and activation theory, Acta Metall. Mater. 38 (1990), pp. 161–164.10.1016/0956-7151(90)90044-H
  • J.Y. Zhang, G. Liu, and J. Sun, Comparisons between homogeneous boundaries and heterophase interfaces in plastic deformation: Nanostructured Cu micropillars vs. nanolayered Cu-based micropillars, Acta Mater. 61 (2013), pp. 6868–6881.10.1016/j.actamat.2013.07.065
  • J.Y. Zhang, X. Liang, P. Zhang, K. Wu, G. Liu, and J. Sun, Emergence of external size effects in the bulk-scale polycrystal to small-scale single-crystal transition: A maximum in the strength and strain-rate sensitivity of multicrystalline Cu micropillars, Acta Mater. 66 (2013), pp. 302–316.
  • H.S. Kim and Y. Estrin, Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials, Acta Mater. 53 (2005), pp. 765–772.10.1016/j.actamat.2004.10.028
  • R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel, Acta Mater. 51 (2003), pp. 5159–5172.10.1016/S1359-6454(03)00365-3
  • B. Zhu, R.J. Asaro, P. Krysl, and R. Bailey, Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals, Acta Mater. 53 (2005), pp. 4825–4838.10.1016/j.actamat.2005.06.033
  • Y. Wei, C. Su, and L. Anand, A computational study of the mechanical behavior of nanocrystalline fcc metals, Acta Mater. 54 (2006), pp. 3177–3190.10.1016/j.actamat.2006.03.007
  • Y. Wei and L. Anand, Grain-boundary sliding and separation in polycrystalline metals: Application to nanocrystalline fcc metals, J. Mech. Phys. Solids 52 (2004), pp. 2587–2616.10.1016/j.jmps.2004.04.006
  • Y. Wei and H. Gao, An elastic-viscoplastic model of deformation in nanocrystalline metals based on coupled mechanisms in grain boundaries and grain interiors, Mater. Sci. Eng. A 478 (2008), pp. 16–25.10.1016/j.msea.2007.05.054
  • H. Conrad, The athermal component of the flow stress in crystalline solids, Mater. Sci. Eng. 6 (1970), pp. 265–273.10.1016/0025-5416(70)90054-6
  • J.C. Gibeling and W.D. Nix, Observations of anelastic backflow following stress reductions during creep of pure metals, Acta Metall. 29 (1981), pp. 1769–1784.10.1016/0001-6160(81)90010-9
  • A.S. Argon and S. Takeuchi, Internal stresses in power-law creep, Acta Metall. 29 (1981), pp. 1877–1884.10.1016/0001-6160(81)90113-9
  • J.C.M. Li and Y.T. Chou, The role of dislocations in the flow stress grain size relationships, Metall. Mater. Trans. B 1 (1970), pp. 1145–1159.
  • L.E. Murr, Some observations of grain boundary ledges and ledges as dislocation sources in metals and alloys, Metall. Trans. A 6 (1975), pp. 505–513.10.1007/BF02658408
  • C.E. Carlton and P.J. Ferreira, What is behind the inverse Hall-Petch effect in nanocrystalline materials?, Acta Mater. 55 (2007), pp. 3749–3756.10.1016/j.actamat.2007.02.021
  • J.Y. Zhang, G. Liu, and J. Sun, Strain rate effects on the mechanical response in multi- and single-crystalline Cu micropillars: Grain boundary effects, Int. J. Plast. 50 (2013), pp. 1–17.10.1016/j.ijplas.2013.03.009
  • N. Lu, K. Du, L. Lu, and H.Q. Ye, Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper, Nat. Commun. 6 (2015), pp. 7648-1–7648-7.10.1038/ncomms8648
  • O. Bouaziz, Y. Estrin, Y. Bréchet, and J.D. Embury, Critical grain size for dislocation storage and consequences for strain hardening of nanocrystalline materials, Scr. Mater. 63 (2010), pp. 477–479.10.1016/j.scriptamat.2010.05.006
  • F.A. Mohamed, A dislocation model for the minimum grain size obtainable by milling, Acta Mater. 51 (2003), pp. 4107–4119.10.1016/S1359-6454(03)00230-1
  • M.R. Barnett, N. Stanford, A. Ghaderi, and F. Siska, Plastic relaxation of the internal stress induced by twinning, Acta Mater. 61 (2013), pp. 7859–7867.10.1016/j.actamat.2013.09.024
  • M.R. Barnett, M.D. Nave, and A. Ghaderi, Yield point elongation due to twinning in a magnesium alloy, Acta Mater. 60 (2012), pp. 1433–1443.10.1016/j.actamat.2011.11.022
  • A. Ghaderi and M.R. Barnett, Sensitivity of deformation twinning to grain size in titanium and magnesium, Acta Mater. 59 (2011), pp. 7824–7839.10.1016/j.actamat.2011.09.018
  • U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: The FCC case, Prog. Mater. Sci. 48 (2003), pp. 171–273.10.1016/S0079-6425(02)00003-8
  • E. Nes, Modelling of work hardening and stress saturation in FCC metals, Prog. Mater. Sci. 41 (1997), pp. 129–193.10.1016/S0079-6425(97)00032-7
  • L.L. Zhu, H.H. Ruan, X.Y. Li, M. Dao, H.J. Gao, and J. Lu, Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals, Acta Mater. 59 (2011), pp. 5544–5557.10.1016/j.actamat.2011.05.027
  • G.A. Malygin, Strength and plasticity of nanocrystalline materials and nanosized crystals, Phys. Usp. 54 (2011), pp. 1091–1116.10.3367/UFNe.0181.201111a.1129
  • A.S. Argon and W.C. Moffatt, Climb of extended edge dislocations, Acta Metall. 29 (1981), pp. 293–299.10.1016/0001-6160(81)90156-5
  • J. Friedel, Dislocations, Pergamon Press, Oxford, 1964.
  • J.P. Hirth and J. Lothe, Theory of dislocations, 2nd ed., Krieger Publishing Company, Malabar, FL, 1982.
  • M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, NY, 1994.10.1002/9780470172278
  • N. Hansen, Hall-Petch relation and boundary strengthening, Scr. Mater. 51 (2004), pp. 801–806.
  • J.C.M. Li, Dislocation dynamics in deformation and recovery, Can. J. Phys. 45 (1967), pp. 493–509.10.1139/p67-043
  • J. Li, J.Y. Zhang, P. Zhang, K. Wu, G. Liu, and J. Sun, Grain size effects on microstructural stability and creep behaviour of nanotwinned Ni free-standing foils at room temperature, Philos. Mag. 96 (2016), pp. 3016–3040.10.1080/14786435.2016.1224396
  • J. Li, J.Y. Zhang, G. Liu, and J. Sun, New insight into the stable grain size of nanotwinned Ni in steady-state creep: Effect of the ratio of effective-to-internal stress, Int. J. Plast. 85 (2016), pp. 172–189.10.1016/j.ijplas.2016.07.009
  • Y. Cao, Y.B. Wang, X.H. An, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins, Scr. Mater. 100 (2015), pp. 98–101.10.1016/j.scriptamat.2015.01.001
  • J. Hu, J. Zhang, Z. Jiang, X. Ding, Y. Zhang, S. Han, J. Sun, and J. Lian, Plastic deformation behavior during unloading in compressive cyclic test of nanocrystalline copper, Mater. Sci. Eng. A 651 (2016), pp. 999–1009.10.1016/j.msea.2015.11.031
  • K. Edalati and Z. Horita, High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness, Acta Mater. 59 (2011), pp. 6831–6836.10.1016/j.actamat.2011.07.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.