872
Views
18
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of initial orientation on twinning in commercially pure titanium

, , , , &
Pages 775-797 | Received 19 May 2016, Accepted 02 Jan 2017, Published online: 17 Jan 2017

References

  • J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982, pp. 811–834.
  • P.G. Partridge, The crystallography and deformation modes of hexagonal close-packed metals, Metall. Rev. 12 (1967), pp. 169–194.
  • W.F. Hosford, The Mechanics of Crystals & Textured Polycrystals, Oxford University Press, New York, 1993, pp. 163–184.
  • M.R. Barnett, A. Ghaderi, J.Q. da Fonseca, and J.D. Robson, Influence of orientation on twin nucleation and growth at low strains in a magnesium alloy, Acta Mater. 80 (2014), pp. 380–391.10.1016/j.actamat.2014.07.013
  • O. Muránsky, D.G. Carr, M.R. Barnett, E.C. Oliver, and P. Šittner, Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: In situ neutron diffraction and EPSC modelling, Mater. Sci. Eng. A 496 (2008), pp. 14–24.10.1016/j.msea.2008.07.031
  • M.R. Barnett, Twinning and the ductility of magnesium alloys Part I: ‘Tension’ twins, Mater. Sci. Eng. A 464 (2007), pp. 1–7.10.1016/j.msea.2006.12.037
  • M.R. Barnett, Twinning and the ductility of magnesium alloys Part II. ‘Contraction’ twins, Mater. Sci. Eng. A 464 (2007), pp. 8–16.10.1016/j.msea.2007.02.109
  • Z. Keshavarz and M.R. Barnett, EBSD analysis of deformation modes in Mg–3Al –1Zn, Scr. Mater. 55 (2006), pp. 915–918.10.1016/j.scriptamat.2006.07.036
  • P. Cizek and M.R. Barnett, Characteristics of the contraction twins formed close to the fracture surface in Mg–3Al–1Zn alloy deformed in tension, Scr. Mater. 59 (2008), pp. 959–962.10.1016/j.scriptamat.2008.06.041
  • Z. Zhang, P. Cizek, and M. Barnett, A critical test of twin-induced softening in a magnesium alloy extruded to a strain of 0.7 at room temperature, Scr. Mater. 67 (2012), pp. 1015–1018.10.1016/j.scriptamat.2012.09.021
  • T. Guo, F. Siska, and M.R. Barnett, Distinguishing between slip and twinning events during nanoindentation of magnesium alloy AZ31, Scr. Mater. 110 (2016), pp. 10–13.10.1016/j.scriptamat.2015.07.034
  • X.L. Wu, K.M. Youssef, C.C. Koch, S.N. Mathaudhu, L.J. Kecskés, and Y.T. Zhu, Deformation twinning in a nanocrystalline hcp Mg alloy, Scr. Mater. 64 (2011), pp. 213–216.10.1016/j.scriptamat.2010.10.024
  • H.J. Yang, S.M. Yin, C.X. Huang, Z.F. Zhang, S.D. Wu, S.X. Li, and Y.D. Liu, EBSD study of deformation twinning in AZ31 magnesium alloy during quasi-in situ compression, Adv. Eng. Mater. 10 (2008), pp. 955–960.10.1002/adem.v10:10
  • J. Wang, I.J. Beyerlein, and C.N. Tomé, An atomic and probabilistic perspective on twin nucleation in Mg, Scr. Mater. 63 (2010), pp. 741–746.10.1016/j.scriptamat.2010.01.047
  • M. Lentz, R.S. Coelho, B. Camin, C. Fahrenson, N. Schaefer, S. Selve, T. Link, I.J. Beyerlein, and W. Reimers, In-situ, ex-situ EBSD and (HR-)TEM analyses of primary, secondary and tertiary twin development in an Mg–4wt.%Li alloy, Mater. Sci. Eng. A 610 (2014), pp. 54–64.10.1016/j.msea.2014.05.025
  • I.J. Beyerlein, R.J. McCabe, and C.N. Tomé, Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modelling study, J. Mech. Phys. Solids 59 (2011), pp. 988–1003.10.1016/j.jmps.2011.02.007
  • J.W. Christian and S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995), pp. 1–157.10.1016/0079-6425(94)00007-7
  • R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed. Wiley, Chichester, 1996, pp. 105–116.10.1115/1.3443416
  • A.A. Salem, S.R. Kalidindi, and R.D. Doherty, Strain hardening regimes and microstructure evolution during large strain compression of high purity titanium, Scr. Mater. 46 (2002), pp. 419–423.10.1016/S1359-6462(02)00005-2
  • A.A. Salem, S.R. Kalidindi, and R.D. Doherty, Strain hardening of titanium: Role of deformation twinning, Acta Mater. 51 (2003), pp. 4225–4237.10.1016/S1359-6454(03)00239-8
  • A.A. Salem, S.R. Kalidindi, R.D. Doherty, and S.L. Semiatin, Strain hardening due to deformation twinning in α-titanium: Mechanisms, Metall. Mater. Trans. A 37 (2006), pp. 259–268.10.1007/s11661-006-0171-2
  • A.A. Salem, S.R. Kalidindi, and S.L. Semiatin, Strain hardening due to deformation twinning in α-titanium: Constitutive relations and crystal-plasticity modeling, Acta Mater. 53 (2005), pp. 3495–3502.10.1016/j.actamat.2005.04.014
  • N.P. Gurao, R. Kapoor, and S. Suwas, Deformation behaviour of commercially pure titanium at extreme strain rates, Acta Mater. 59 (2011), pp. 3431–3446.10.1016/j.actamat.2011.02.018
  • S. Sinha, A. Ghosh, and N.P. Gurao, Effect of initial orientation on tensile properties of commercially pure titanium, Philos. Mag. 96 (2016), pp. 1485–1508.10.1080/14786435.2016.1165873
  • B. Beausir and J.-J. Fundenberger, ATOM – Analysis Tools for Orientation Maps, Université de Lorraine, Metz, 2015. Available at http://atom-software.eu/.
  • E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Thermostatistical modelling of deformation twinning in HCP metals, Int. J. Plast. 55 (2014), pp. 25–42.10.1016/j.ijplas.2013.09.006
  • I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tomé, Statistical analyses of deformation twinning in magnesium, Philos. Mag. 90 (2010), pp. 2161–2190.10.1080/14786431003630835
  • A. Fernández, A. Jérusalem, I. Gutiérrez-Urrutia, and M.T. Pérez-Prado, Three-dimensional investigation of grain boundary – Twin interactions in a Mg AZ31 alloy by electron backscatter diffraction and continuum modeling, Acta Mater. 61 (2013), pp. 7679–7692.10.1016/j.actamat.2013.09.005
  • M. Arul Kumar, A.K. Kanjarla, S.R. Niezgoda, R.A. Lebensohn, and C.N. Tomé, Numerical study of the stress state of a deformation twin in magnesium, Acta Mater. 84 (2015), pp. 349–358.10.1016/j.actamat.2014.10.048
  • J. Jiang, A. Godfrey, W. Liu, and Q. Liu, Identification and analysis of twinning variants during compression of a Mg–Al–Zn alloy, Scr. Mater. 58 (2008), pp. 122–125.10.1016/j.scriptamat.2007.09.047
  • S.J. Lainé and K.M. Knowles, {1124} deformation twinning in commercial purity titanium at room temperature, Philos. Mag. 95 (2015), pp. 2153–2166.10.1080/14786435.2015.1051157
  • L. Bao, C. Schuman, Q. Le, J.-S. Lecomte, Z. Zhang, M.-J. Philippe, J. Cui, and C. Esling, A novel method for predicting variant selection during primary, secondary and tertiary twinning in titanium, Mater. Lett. 132 (2014), pp. 162–166.10.1016/j.matlet.2014.06.080
  • L. Bao, C. Schuman, J.-S. Lecomte, M.-J. Philippe, X. Zhao, and C. Esling, A study of twin variant selection and twin growth in titanium, Adv. Eng. Mater. 13 (2011), pp. 928–932.10.1002/adem.201100055
  • L. Bao, Y. Zhang, C. Schuman, J.-S. Lecomte, M.-J. Philippe, X. Zhao, and C. Esling, Multiple twinning in pure hexagonal close-packed titanium, J. Appl. Crystallogr. 46 (2013), pp. 1397–1406.10.1107/S002188981302253X
  • W. Pantleon, Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction, Scr. Mater. 58 (2008), pp. 994–997.10.1016/j.scriptamat.2008.01.050
  • B. Beausir and C. Fressengeas, Disclination densities from EBSD orientation mapping, Int. J. Solids Struct. 50 (2013), pp. 137–146.10.1016/j.ijsolstr.2012.09.016
  • I. Ghamarian, Y. Liu, P. Samimi, and P.C. Collins, Development and application of a novel precession electron diffraction technique to quantify and map deformation structures in highly deformed materials – As applied to ultrafine-grained titanium, Acta Mater. 79 (2014), pp. 203–215.10.1016/j.actamat.2014.06.063
  • A. Khosravani, D.T. Fullwood, B.L. Adams, T.M. Rampton, M.P. Miles, and R.K. Mishra, Nucleation and propagation of {1012} twins in AZ31 magnesium alloy, Acta Mater. 100 (2015), pp. 202–214.10.1016/j.actamat.2015.08.024
  • S. Nourbakhsh and T.D. O’Brien, Texture formation and transition in cold-rolled titanium, Mater. Sci. Eng. 100 (1988), pp. 109–114.10.1016/0025-5416(88)90245-5
  • I.J. Beyerlein and C.N. Tome, A probabilistic twin nucleation model for HCP polycrystalline metals, Proc. R. Soc. A Math. Phys. Eng. Sci. 466 (2010), pp. 2517–2544.10.1098/rspa.2009.0661
  • A. Roth, M.A. Lebyodkin, T.A. Lebedkina, J.-S. Lecomte, T. Richeton, and K.E.K. Amouzou, Mechanisms of anisotropy of mechanical properties of α-titanium in tension conditions, Mater. Sci. Eng. A 596 (2014), pp. 236–243.10.1016/j.msea.2013.12.061
  • H. Qin and J.J. Jonas, Variant selection during secondary and tertiary twinning in pure titanium, Acta Mater. 75 (2014), pp. 198–211.10.1016/j.actamat.2014.04.065

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.